Poynting's Theorem
In electrodynamics, Poynting's theorem is a statement of conservation of energy for electromagnetic fields developed by British physicist John Henry Poynting. It states that in a given volume, the stored energy changes at a rate given by the work done on the charges within the volume, minus the rate at which energy leaves the volume. It is only strictly true in media which is not dispersive, but can be extended for the dispersive case. The theorem is analogous to the work-energy theorem in classical mechanics, and mathematically similar to the continuity equation. Definition Poynting's theorem states that the rate of energy transfer per unit volume from a region of space equals the rate of work done on the charge distribution in the region, plus the energy flux leaving that region. Mathematically: where: * -\frac is the rate of change of the energy density in the volume. * ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. * Jâ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electrodynamics
In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electricity and magnetism, two distinct but closely intertwined phenomena. In essence, electric forces occur between any two charged particles, causing an attraction between particles with opposite charges and repulsion between particles with the same charge, while magnetism is an interaction that occurs exclusively between ''moving'' charged particles. These two effects combine to create electromagnetic fields in the vicinity of charge particles, which can exert influence on other particles via the Lorentz force. At high energy, the weak force and electromagnetic force are unified as a single electroweak force. The electromagnetic force is responsible for many o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Divergence Theorem
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, reprinted in is a theorem which relates the ''flux'' of a vector field through a closed surface to the ''divergence'' of the field in the volume enclosed. More precisely, the divergence theorem states that the surface integral of a vector field over a closed surface, which is called the "flux" through the surface, is equal to the volume integral of the divergence over the region inside the surface. Intuitively, it states that "the sum of all sources of the field in a region (with sinks regarded as negative sources) gives the net flux out of the region". The divergence theorem is an important result for the mathematics of physics and engineering, particularly in electrostatics and fluid dynamics. In these fields, it is usually applied in three dimensions. However, it generalizes to any number of dimensions. In one dimension, it is equivalent to integration by parts. In two di ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electric Susceptibility
In electricity (electromagnetism), the electric susceptibility (\chi_; Latin: ''susceptibilis'' "receptive") is a dimensionless proportionality constant that indicates the degree of polarization of a dielectric material in response to an applied electric field. The greater the electric susceptibility, the greater the ability of a material to polarize in response to the field, and thereby reduce the total electric field inside the material(and store energy). It is in this way that the electric susceptibility influences the electric permittivity of the material and thus influences many other phenomena in that medium, from the capacitance of capacitors to the speed of light. Definition for linear dielectrics If a dielectric material is a linear dielectric, then electric susceptibility is defined as the constant of proportionality (which may be a matrix) relating an electric field E to the induced dielectric polarization density P such that \mathbf P =\varepsilon_0 \chi_, wher ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magnetic Monopole
In particle physics, a magnetic monopole is a hypothetical elementary particle that is an isolated magnet with only one magnetic pole (a north pole without a south pole or vice versa). A magnetic monopole would have a net north or south "magnetic charge". Modern interest in the concept stems from particle theories, notably the grand unified and superstring theories, which predict their existence. The known elementary particles that have electric charge are electric monopoles. Magnetism in bar magnets and electromagnets is not caused by magnetic monopoles, and indeed, there is no known experimental or observational evidence that magnetic monopoles exist. Some condensed matter systems contain effective (non-isolated) magnetic monopole quasi-particles, or contain phenomena that are mathematically analogous to magnetic monopoles. Historical background Early science and classical physics Many early scientists attributed the magnetism of lodestones to two different "magnetic fl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abraham–Minkowski Controversy
The Abraham–Minkowski controversy is a physics debate concerning electromagnetic momentum within dielectric media. Two equations were first suggested by Hermann Minkowski (1908) :* Wikisource translationThe Fundamental Equations for Electromagnetic Processes in Moving Bodies and Max Abraham (1909) :* Wikisource translation: On the Electrodynamics of Moving Bodies :* Wikisource translation: On the Electrodynamics of Minkowski for this momentum. They predict different values, from which the name of the controversy derives. See also: Experimental support has been claimed for both. David J. Griffiths argues that, in the presence of matter, only the total stress–energy tensor The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress ... carries unambiguous physical significance, and how one ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Maxwell–Faraday Equation
Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic induction. It is the fundamental operating principle of transformers, inductors, and many types of electrical motors, generators and solenoids. The Maxwell–Faraday equation (listed as one of Maxwell's equations) describes the fact that a spatially varying (and also possibly time-varying, depending on how a magnetic field varies in time) electric field always accompanies a time-varying magnetic field, while Faraday's law states that there is emf (electromotive force, defined as electromagnetic work done on a unit charge when it has traveled one round of a conductive loop) on the conductive loop when the magnetic flux through the surface enclosed by the loop varies in time. Faraday's law had been discovered and one aspect of it (transformer emf ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Vector Identity
The following are important identities involving derivatives and integrals in vector calculus. Operator notation Gradient For a function f(x, y, z) in three-dimensional Cartesian coordinate variables, the gradient is the vector field: \operatorname(f) = \nabla f = \begin \frac,\ \frac,\ \frac \end f = \frac \mathbf + \frac \mathbf + \frac \mathbf where i, j, k are the standard unit vectors for the ''x'', ''y'', ''z''-axes. More generally, for a function of ''n'' variables \psi(x_1, \ldots, x_n), also called a scalar field, the gradient is the vector field: \nabla\psi = \begin\frac, \ldots,\ \frac \end\psi = \frac \mathbf_1 + \dots + \frac\mathbf_n . where \mathbf_ are orthogonal unit vectors in arbitrary directions. As the name implies, the gradient is proportional to and points in the direction of the function's most rapid (positive) change. For a vector field \mathbf = \left(A_1, \ldots, A_n\right) written as a 1 × ''n'' row vector, also called a tensor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Force Law
Lorentz is a name derived from the Roman surname, Laurentius, which means "from Laurentum". It is the German form of Laurence. Notable people with the name include: Given name * Lorentz Aspen (born 1978), Norwegian heavy metal pianist and keyboardist * Lorentz Dietrichson (1834–1917), Norwegian poet and historian of art and literature * Lorentz Eichstadt (1596–1660), German mathematician and astronomer * Lorentz Harboe Ree (1888–1962), Norwegian architect * Lorentz Lange (1783–1860), Norwegian judge and politician * Lorentz Reige (born 1990), Swedish dancer * Lorentz Reitan (born 1946), Norwegian musicologist Mononym * Lorentz (rapper), real name Lorentz Alexander, Swedish singer and rapper Surname * Dominique Lorentz, French investigative journalist who has written books on nuclear proliferation * Friedrich Lorentz, author of works on the Pomeranian language * Hendrik Antoon Lorentz (1853–1928), Dutch physicist and Nobel Prize winner * Hendrikus Albertus Lorentz ( ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Force
In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an electric field and a magnetic field experiences a force of \mathbf = q\,\mathbf + q\,\mathbf \times \mathbf (in SI unitsIn SI units, is measured in teslas (symbol: T). In Gaussian-cgs units, is measured in gauss (symbol: G). See e.g. )The -field is measured in amperes per metre (A/m) in SI units, and in oersteds (Oe) in cgs units. ). It says that the electromagnetic force on a charge is a combination of a force in the direction of the electric field proportional to the magnitude of the field and the quantity of charge, and a force at right angles to the magnetic field and the velocity of the charge, proportional to the magnitude of the field, the charge, and the velocity. Variations on this basic formula describe the magnetic force on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electric Power
Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively. A common misconception is that electric power is bought and sold, but actually electrical energy is bought and sold. For example, electricity is sold to consumers in kilowatt-hours (kilowatts multiplied by hours), because energy is power multiplied by time. Electric power is usually produced by electric generators, but can also be supplied by sources such as electric batteries. It is usually supplied to businesses and homes (as domestic mains electricity) by the electric power industry through an electrical grid. Electric power can be delivered over long distances by transmission lines and used for applications such as motion, light or heat with high efficiency. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electric Power
Electric power is the rate at which electrical energy is transferred by an electric circuit. The SI unit of power is the watt, one joule per second. Standard prefixes apply to watts as with other SI units: thousands, millions and billions of watts are called kilowatts, megawatts and gigawatts respectively. A common misconception is that electric power is bought and sold, but actually electrical energy is bought and sold. For example, electricity is sold to consumers in kilowatt-hours (kilowatts multiplied by hours), because energy is power multiplied by time. Electric power is usually produced by electric generators, but can also be supplied by sources such as electric batteries. It is usually supplied to businesses and homes (as domestic mains electricity) by the electric power industry through an electrical grid. Electric power can be delivered over long distances by transmission lines and used for applications such as motion, light or heat with high efficiency. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |