HOME
*





Pollock's Conjectures
Pollock's conjectures are two closely related unproven conjectures in additive number theory. They were first stated in 1850 by Sir Frederick Pollock, better known as a lawyer and politician, but also a contributor of papers on mathematics to the Royal Society. These conjectures are a partial extension of the Fermat polygonal number theorem to three-dimensional figurate numbers, also called polyhedral numbers. *Pollock tetrahedral numbers conjecture: Every positive integer is the sum of at most five tetrahedral numbers. The numbers that are not the sum of at most 4 tetrahedral numbers are given by the sequence 17, 27, 33, 52, 73, ..., of 241 terms, with 343867 being almost certainly the last such number. *Pollock octahedral numbers conjecture: Every positive integer is the sum of at most seven octahedral numbers. This conjecture has been proven for all but finitely many positive integers. *Polyhedral numbers conjecture: Let ''m'' be the number of vertices of a platonic solid “r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjecture
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Vertex (geometry)
In geometry, a vertex (in plural form: vertices or vertexes) is a point (geometry), point where two or more curves, line (geometry), lines, or edge (geometry), edges meet. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedron, polyhedra are vertices. Definition Of an angle The ''vertex'' of an angle is the point where two Line (mathematics)#Ray, rays begin or meet, where two line segments join or meet, where two lines intersect (cross), or any appropriate combination of rays, segments, and lines that result in two straight "sides" meeting at one place. :(3 vols.): (vol. 1), (vol. 2), (vol. 3). Of a polytope A vertex is a corner point of a polygon, polyhedron, or other higher-dimensional polytope, formed by the intersection (Euclidean geometry), intersection of Edge (geometry), edges, face (geometry), faces or facets of the object. In a polygon, a vertex is called "convex set, convex" if the internal an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjectures
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mathe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Icosahedral Number
An icosahedral number is a figurate number that represents an icosahedron. The ''n''th icosahedral number is given by the formula : The first such numbers are 1, 12, 48, 124, 255, 456, 742, 1128, 1629, 2260, 3036, 3972, 5083, … . History The first study of icosahedral numbers appears to have been by René Descartes, around 1630, in his ''De solidorum elementis''. Prior to Descartes, figurate numbers had been studied by the ancient Greeks and by Johann Faulhaber, but only for polygonal numbers, pyramidal numbers, and cubes. Descartes introduced the study of figurate numbers based on the Platonic solids and some semiregular polyhedra; his work included the icosahedral numbers. However, ''De solidorum elementis'' was lost, and not rediscovered until 1860. In the meantime, icosahedral numbers had been studied again by other mathematicians, including Friedrich Wilhelm Marpurg Friedrich Wilhelm Marpurg (21 November 1718 – 22 May 1795) was a German music critic, music theorist ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dodecahedral Number
A dodecahedral number is a figurate number that represents a dodecahedron. The ''n''th dodecahedral number is given by the formula = The first such numbers are 0, 1, 20, 84, 220, 455, 816, 1330, 2024, 2925, 4060, 5456, 7140, 9139, 11480, … . History The first study of dodecahedral numbers appears to have been by René Descartes, around 1630, in his ''De solidorum elementis''. Prior to Descartes, figurate numbers had been studied by the ancient Greeks and by Johann Faulhaber, but only for polygonal numbers, pyramidal numbers, and cubes. Descartes introduced the study of figurate numbers based on the Platonic solids and some semiregular polyhedra; his work included the dodecahedral numbers. However, ''De solidorum elementis'' was lost, and not rediscovered until 1860. In the meantime, dodecahedral numbers had been studied again by other mathematicians, including Friedrich Wilhelm Marpurg in 1774, Georg Simon Klügel Georg Simon Klügel (August 19, 1739 – August 4, 1812) wa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cube Number
In arithmetic and algebra, the cube of a number is its third power, that is, the result of multiplying three instances of together. The cube of a number or any other mathematical expression is denoted by a superscript 3, for example or . The cube is also the number multiplied by its square: :. The ''cube function'' is the function (often denoted ) that maps a number to its cube. It is an odd function, as :. The volume of a geometric cube is the cube of its side length, giving rise to the name. The inverse operation that consists of finding a number whose cube is is called extracting the cube root of . It determines the side of the cube of a given volume. It is also raised to the one-third power. The graph of the cube function is known as the cubic parabola. Because the cube function is an odd function, this curve has a center of symmetry at the origin, but no axis of symmetry. In integers A cube number, or a perfect cube, or sometimes just a cube, is a number which ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Platonic Solid
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex. There are only five such polyhedra: Geometers have studied the Platonic solids for thousands of years. They are named for the ancient Greek philosopher Plato who hypothesized in one of his dialogues, the ''Timaeus'', that the classical elements were made of these regular solids. History The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

History Of The Theory Of Numbers
''History of the Theory of Numbers'' is a three-volume work by L. E. Dickson summarizing work in number theory up to about 1920. The style is unusual in that Dickson mostly just lists results by various authors, with little further discussion. The central topic of quadratic reciprocity and higher reciprocity laws is barely mentioned; this was apparently going to be the topic of a fourth volume that was never written . Volumes * Volume 1 - Divisibility and Primality - 486 pages * Volume 2 - Diophantine Analysis In mathematics, a Diophantine equation is an equation, typically a polynomial equation in two or more unknowns with integer coefficients, such that the only solutions of interest are the integer ones. A linear Diophantine equation equates to a c ... - 803 pages * Volume 3 - Quadratic and Higher Forms - 313 pages References * * * * * * * * * * * * External links History of the Theory of Numbers - Volume 1at the Internet Archive. History of the Theory of Numbers - Volu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Additive Number Theory
Additive number theory is the subfield of number theory concerning the study of subsets of integers and their behavior under addition. More abstractly, the field of additive number theory includes the study of abelian groups and commutative semigroups with an operation of addition. Additive number theory has close ties to combinatorial number theory and the geometry of numbers. Two principal objects of study are the sumset of two subsets ''A'' and ''B'' of elements from an abelian group ''G'', :A + B = \, and the h-fold sumset of ''A'', :hA = \underset\,. Additive number theory The field is principally devoted to consideration of ''direct problems'' over (typically) the integers, that is, determining the structure of ''hA'' from the structure of ''A'': for example, determining which elements can be represented as a sum from ''hA'', where ''A'' is a fixed subset.Nathanson (1996) II:1 Two classical problems of this type are the Goldbach conjecture (which is the conjecture that 2 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Octahedral Number
In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The ''n''th octahedral number O_n can be obtained by the formula:. :O_n=. The first few octahedral numbers are: : 1, 6, 19, 44, 85, 146, 231, 344, 489, 670, 891 . Properties and applications The octahedral numbers have a generating function : \frac = \sum_^ O_n z^n = z +6z^2 + 19z^3 + \cdots . Sir Frederick Pollock conjectured in 1850 that every positive integer is the sum of at most 7 octahedral numbers. This statement, the Pollock octahedral numbers conjecture, has been proven true for all but finitely many numbers. In chemistry, octahedral numbers may be used to describe the numbers of atoms in octahedral clusters; in this context they are called magic numbers.. Relation to other figurate numbers Square pyramids An octahedral packing of spheres may be partitioned into two square pyramids, one upside-down underneath ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tetrahedral Number
A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron. The th tetrahedral number, , is the sum of the first triangular numbers, that is, : Te_n = \sum_^n T_k = \sum_^n \frac = \sum_^n \left(\sum_^k i\right) The tetrahedral numbers are: : 1, 4, 10, 20, 35, 56, 84, 120, 165, 220, ... Formula The formula for the th tetrahedral number is represented by the 3rd rising factorial of divided by the factorial of 3: :Te_n= \sum_^n T_k = \sum_^n \frac = \sum_^n \left(\sum_^k i\right)=\frac = \frac The tetrahedral numbers can also be represented as binomial coefficients: :Te_n=\binom. Tetrahedral numbers can therefore be found in the fourth position either from left or right in Pascal's triangle. Proofs of formula This proof uses the fact that the th triangular number is given by :T_n=\frac. It proceeds by induction. ;Base case :Te_1 = 1 = \frac. ;Inductive step :\ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]