Polarization (Lie Algebra)
   HOME
*





Polarization (Lie Algebra)
In representation theory, polarization is the maximal Isotropic quadratic form, totally isotropic subspace of a certain skew-symmetric bilinear form on a Lie algebra. The notion of polarization plays an important role in construction of Irreducible representation, irreducible unitary representations of some classes of Lie groups by means of the orbit method as well as in harmonic analysis on Lie groups and mathematical physics. Definition Let G be a Lie group, \mathfrak the Lie group–Lie algebra correspondence, corresponding Lie algebra and \mathfrak^* its Dual space, dual. Let \langle f,\,X\rangle denote the value of the linear form (covector) f\in\mathfrak^* on a vector X\in\mathfrak. The subalgebra \mathfrak of the algebra \mathfrak g is called subordinate of f\in\mathfrak^* if the condition :\forall X, Y\in\mathfrak\ \langle f,\,[X,\,Y]\rangle = 0, or, alternatively, :\langle f,\,[\mathfrak,\,\mathfrak]\rangle = 0 is satisfied. Further, let the group G Group action, act on th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Representation Theory
Representation theory is a branch of mathematics that studies abstract algebraic structures by ''representing'' their elements as linear transformations of vector spaces, and studies modules over these abstract algebraic structures. In essence, a representation makes an abstract algebraic object more concrete by describing its elements by matrices and their algebraic operations (for example, matrix addition, matrix multiplication). The theory of matrices and linear operators is well-understood, so representations of more abstract objects in terms of familiar linear algebra objects helps glean properties and sometimes simplify calculations on more abstract theories. The algebraic objects amenable to such a description include groups, associative algebras and Lie algebras. The most prominent of these (and historically the first) is the representation theory of groups, in which elements of a group are represented by invertible matrices in such a way that the group operation i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Group Action
In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism group of the structure. It is said that the group ''acts'' on the space or structure. If a group acts on a structure, it will usually also act on objects built from that structure. For example, the group of Euclidean isometries acts on Euclidean space and also on the figures drawn in it. For example, it acts on the set of all triangles. Similarly, the group of symmetries of a polyhedron acts on the vertices, the edges, and the faces of the polyhedron. A group action on a vector space is called a representation of the group. In the case of a finite-dimensional vector space, it allows one to identify many groups with subgroups of , the group of the invertible matrices of dimension over a field . The symmetric group acts on any set wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


General Position
In algebraic geometry and computational geometry, general position is a notion of genericity for a set of points, or other geometric objects. It means the ''general case'' situation, as opposed to some more special or coincidental cases that are possible, which is referred to as special position. Its precise meaning differs in different settings. For example, generically, two lines in the plane intersect in a single point (they are not parallel or coincident). One also says "two generic lines intersect in a point", which is formalized by the notion of a generic point. Similarly, three generic points in the plane are not collinear; if three points are collinear (even stronger, if two coincide), this is a degenerate case. This notion is important in mathematics and its applications, because degenerate cases may require an exceptional treatment; for example, when stating general theorems or giving precise statements thereof, and when writing computer programs (see '' generic compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon (199 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Solvable Lie Algebra
In mathematics, a Lie algebra \mathfrak is solvable if its derived series terminates in the zero subalgebra. The ''derived Lie algebra'' of the Lie algebra \mathfrak is the subalgebra of \mathfrak, denoted : mathfrak,\mathfrak/math> that consists of all linear combinations of Lie brackets of pairs of elements of \mathfrak. The ''derived series'' is the sequence of subalgebras : \mathfrak \geq mathfrak,\mathfrak\geq \mathfrak,\mathfrak mathfrak,\mathfrak \geq [ \mathfrak,\mathfrak mathfrak,\mathfrak, \mathfrak,\mathfrak mathfrak,\mathfrak] \geq ... If the derived series eventually arrives at the zero subalgebra, then the Lie algebra is called solvable. The derived series for Lie algebras is analogous to the derived series for commutator subgroups in group theory, and solvable Lie algebras are analogs of solvable groups. Any nilpotent Lie algebra_is_a_fortiori.html" ;"title="mathfrak,\mathfrak ... is a fortiori">mathfrak,\mathfrak ... is a fortiori solvable but the converse is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Solvable Group
In mathematics, more specifically in the field of group theory, a solvable group or soluble group is a group that can be constructed from abelian groups using extensions. Equivalently, a solvable group is a group whose derived series terminates in the trivial subgroup. Motivation Historically, the word "solvable" arose from Galois theory and the proof of the general unsolvability of quintic equation. Specifically, a polynomial equation is solvable in radicals if and only if the corresponding Galois group is solvable (note this theorem holds only in characteristic 0). This means associated to a polynomial f \in F /math> there is a tower of field extensionsF = F_0 \subseteq F_1 \subseteq F_2 \subseteq \cdots \subseteq F_m=Ksuch that # F_i = F_ alpha_i/math> where \alpha_i^ \in F_, so \alpha_i is a solution to the equation x^ - a where a \in F_ # F_m contains a splitting field for f(x) Example For example, the smallest Galois field extension of \mathbb containing the elemen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nilpotent Group
In mathematics, specifically group theory, a nilpotent group ''G'' is a group that has an upper central series that terminates with ''G''. Equivalently, its central series is of finite length or its lower central series terminates with . Intuitively, a nilpotent group is a group that is "almost abelian". This idea is motivated by the fact that nilpotent groups are solvable, and for finite nilpotent groups, two elements having relatively prime orders must commute. It is also true that finite nilpotent groups are supersolvable. The concept is credited to work in the 1930s by Russian mathematician Sergei Chernikov. Nilpotent groups arise in Galois theory, as well as in the classification of groups. They also appear prominently in the classification of Lie groups. Analogous terms are used for Lie algebras (using the Lie bracket) including nilpotent, lower central series, and upper central series. Definition The definition uses the idea of a central series for a group. The followi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alexandre Kirillov
Alexandre Aleksandrovich Kirillov (russian: Алекса́ндр Алекса́ндрович Кири́ллов, born 1936) is a Soviet and Russian mathematician, known for his works in the fields of representation theory, topological groups and Lie groups. In particular he introduced the orbit method into representation theory. He is an emeritus professor at the University of Pennsylvania. Career Kirillov studied at Moscow State University where he was a student of Israel Gelfand. His Ph.D. (kandidat) dissertation ''Unitary representations of nilpotent Lie groups'' was published in 1962. He was awarded the degree of Doctor of Science. At the time he was the youngest Doctor of Science in the Soviet Union. He worked at the Moscow State University until 1994 when he became the Francis J. Carey Professor of Mathematics at the University of Pennsylvania. During his school years, Kirillov was a winner of many mathematics competitions, and he is still an active organizer of Russia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Lajos Pukánszky
Lajos Pukánszky (1928-1996) was a Hungarian and American mathematician noted for his work in representation theory of solvable Lie groups. He was born in Budapest on November 24, 1928, defended his thesis in 1955 at the University of Szeged under Béla Szőkefalvi-Nagy, but left Hungary in 1956. After taking several posts in the United States (at the Research Institute of Advanced Studies in Baltimore, the University of Maryland, College Park, Stanford University, UCLA), in 1965 he became a professor at the University of Pennsylvania, where he stayed until his retirement. He gave an invited address at the International Congress of Mathematicians in Nice in 1970. In 1988 a conference entitled "The Orbit Method in Representation Theory" was held at the University of Copenhagen in honor of his sixtieth birthday. He died on February 15, 1996, in Philadelphia. Scientific work Pukánszky's early work concerned von Neumann algebras and related subjects. In 1956 he constructed two nonisomo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coadjoint Representation
In mathematics, the coadjoint representation K of a Lie group G is the dual of the adjoint representation. If \mathfrak denotes the Lie algebra of G, the corresponding action of G on \mathfrak^*, the dual space to \mathfrak, is called the coadjoint action. A geometrical interpretation is as the action by left-translation on the space of right-invariant 1-forms on G. The importance of the coadjoint representation was emphasised by work of Alexandre Kirillov, who showed that for nilpotent Lie groups G a basic role in their representation theory is played by coadjoint orbits. In the Kirillov method of orbits, representations of G are constructed geometrically starting from the coadjoint orbits. In some sense those play a substitute role for the conjugacy classes of G, which again may be complicated, while the orbits are relatively tractable. Formal definition Let G be a Lie group and \mathfrak be its Lie algebra. Let \mathrm : G \rightarrow \mathrm(\mathfrak) denote the adjoint re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]