Pohlig–Hellman Algorithm
In group theory, the Pohlig–Hellman algorithm, sometimes credited as the Silver–Pohlig–Hellman algorithm, Mollin 2006, pg. 344 is a special-purpose algorithm for computing discrete logarithms in a finite abelian group whose order is a smooth integer. The algorithm was introduced by Roland Silver, but first published by Stephen Pohlig and Martin Hellman (independent of Silver). Groups of prime-power order As an important special case, which is used as a subroutine in the general algorithm (see below), the Pohlig–Hellman algorithm applies to groups whose order is a prime power. The basic idea of this algorithm is to iteratively compute the p-adic digits of the logarithm by repeatedly "shifting out" all but one unknown digit in the exponent, and computing that digit by elementary methods. (Note that for readability, the algorithm is stated for cyclic groups — in general, G must be replaced by the subgroup \langle g\rangle generated by g, which is always cyclic.) :Input. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prime Power
In mathematics, a prime power is a positive integer which is a positive integer power of a single prime number. For example: , and are prime powers, while , and are not. The sequence of prime powers begins: 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 243, 251, … . The prime powers are those positive integers that are divisible by exactly one prime number; in particular, the number 1 is not a prime power. Prime powers are also called primary numbers, as in the primary decomposition. Properties Algebraic properties Prime powers are powers of prime numbers. Every prime power (except powers of 2) has a primitive root; thus the multiplicative group of integers modulo ''p''''n'' (i.e. the group of units of the ring Z/''p''''n''Z) is ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after early 19th century mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation \cdot that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The symbo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). For example, if we know that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then without knowing the value of ''n'', we can determine that the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if ''n'' is a natural number less than 105, then 23 is the only possible value of ''n''. The earliest known statement of the theorem is by the Chinese mathematician Sun-tzu in the '' Sun-tzu Suan-ching'' in the 3rd century CE. The Chinese remainder theorem is widely used for computing with lar ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Big O Notation
Big ''O'' notation is a mathematical notation that describes the limiting behavior of a function when the argument tends towards a particular value or infinity. Big O is a member of a family of notations invented by Paul Bachmann, Edmund Landau, and others, collectively called Bachmann–Landau notation or asymptotic notation. The letter O was chosen by Bachmann to stand for ''Ordnung'', meaning the order of approximation. In computer science, big O notation is used to classify algorithms according to how their run time or space requirements grow as the input size grows. In analytic number theory, big O notation is often used to express a bound on the difference between an arithmetical function and a better understood approximation; a famous example of such a difference is the remainder term in the prime number theorem. Big O notation is also used in many other fields to provide similar estimates. Big O notation characterizes functions according to their growth rates: d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Baby-step Giant-step
In group theory, a branch of mathematics, the baby-step giant-step is a meet-in-the-middle algorithm for computing the discrete logarithm or order of an element in a finite abelian group by Daniel Shanks. The discrete log problem is of fundamental importance to the area of public key cryptography. Many of the most commonly used cryptography systems are based on the assumption that the discrete log is extremely difficult to compute; the more difficult it is, the more security it provides a data transfer. One way to increase the difficulty of the discrete log problem is to base the cryptosystem on a larger group. Theory The algorithm is based on a space–time tradeoff. It is a fairly simple modification of trial multiplication, the naive method of finding discrete logarithms. Given a cyclic group G of order n, a generator \alpha of the group and a group element \beta, the problem is to find an integer x such that : \alpha^x = \beta\,. The baby-step giant-step algorithm is based o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lagrange's Theorem (group Theory)
In the mathematical field of group theory, Lagrange's theorem is a theorem that states that for any finite group , the order (number of elements) of every subgroup of divides the order of . The theorem is named after Joseph-Louis Lagrange. The following variant states that for a subgroup H of a finite group G, not only is , G, /, H, an integer, but its value is the index :H/math>, defined as the number of left cosets of H in G. This variant holds even if G is infinite, provided that , G, , , H, , and :H/math> are interpreted as cardinal numbers. Proof The left cosets of in are the equivalence classes of a certain equivalence relation on : specifically, call and in equivalent if there exists in such that . Therefore, the left cosets form a partition of . Each left coset has the same cardinality as because x \mapsto ax defines a bijection H \to aH (the inverse is y \mapsto a^y). The number of left cosets is the index . By the previous three sentences, :\left, G\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set and an Binary operation, operation that combines any two Element (mathematics), elements of the set to produce a third element of the set, in such a way that the operation is Associative property, associative, an identity element exists and every element has an Inverse element, inverse. These three axioms hold for Number#Main classification, number systems and many other mathematical structures. For example, the integers together with the addition operation form a group. The concept of a group and the axioms that define it were elaborated for handling, in a unified way, essential structural properties of very different mathematical entities such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry groups arise naturally in the study of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group Theory
In abstract algebra, group theory studies the algebraic structures known as group (mathematics), groups. The concept of a group is central to abstract algebra: other well-known algebraic structures, such as ring (mathematics), rings, field (mathematics), fields, and vector spaces, can all be seen as groups endowed with additional operation (mathematics), operations and axioms. Groups recur throughout mathematics, and the methods of group theory have influenced many parts of algebra. Linear algebraic groups and Lie groups are two branches of group theory that have experienced advances and have become subject areas in their own right. Various physical systems, such as crystals and the hydrogen atom, and Standard Model, three of the four known fundamental forces in the universe, may be modelled by symmetry groups. Thus group theory and the closely related representation theory have many important applications in physics, chemistry, and materials science. Group theory is also ce ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Martin Hellman
Martin Edward Hellman (born October 2, 1945) is an American cryptologist and mathematician, best known for his involvement with public key cryptography in cooperation with Whitfield Diffie and Ralph Merkle. Hellman is a longtime contributor to the computer privacy debate, and has applied risk analysis to a potential failure of nuclear deterrence. Hellman was elected a member of the National Academy of Engineering in 2002 for contributions to the theory and practice of cryptography. In 2016, wrote a book with his wife, Dorothie Hellman, that links creating love at home to bringing peace to the planet (''A New Map for Relationships: Creating True Love at Home and Peace on the Planet''). Early life Born in New York to a Jewish family, Hellman graduated from the Bronx High School of Science. He went on to take his bachelor's degree in electrical engineering from New York University in 1966, and at Stanford University he received a master's degree and a Ph.D. in the discipline in 196 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Stephen Pohlig
Stephen Pohlig (1953-April 14, 2017) was an electrical engineer who worked in the MIT Lincoln Laboratory. As a graduate student of Martin Hellman's at Stanford University in the mid-1970s, he helped develop the underlying concepts of Diffie-Hellman key exchange, including the Pohlig–Hellman exponentiation cipher and the Pohlig–Hellman algorithm 2004, Palo Alto, California. , University of Minnesota, Minneapolis. for computing s. That cipher can be regarded as a predecessor to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |