HOME
*



picture info

Pitching Moment
In aerodynamics, the pitching moment on an airfoil is the moment (or torque) produced by the aerodynamic force on the airfoil if that aerodynamic force is considered to be applied, not at the center of pressure, but at the aerodynamic center of the airfoil. The pitching moment on the wing of an airplane is part of the total moment that must be balanced using the lift on the horizontal stabilizer. More generally, a pitching moment is any moment acting on the pitch axis of a moving body. The lift on an airfoil is a distributed force that can be said to act at a point called the center of pressure. However, as angle of attack changes on a cambered airfoil, there is movement of the center of pressure forward and aft. This makes analysis difficult when attempting to use the concept of the center of pressure. One of the remarkable properties of a cambered airfoil is that, even though the center of pressure moves forward and aft, if the lift is imagined to act at a point calle ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dynamic Pressure
In fluid dynamics, dynamic pressure (denoted by or and sometimes called velocity pressure) is the quantity defined by:Clancy, L.J., ''Aerodynamics'', Section 3.5 :q = \frac\rho\, u^2 where (in SI units): * is the dynamic pressure in pascals (i.e., kg/ m⋅ s2), * is the fluid mass density (e.g. in kg/m3), and * is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and static pressure. From Bernoulli's law, dynamic pressure is given by : p_0 - p_\text = \frac\rho\, u^2 where and are the total and static pressures, respectively. Physical meaning Dynamic pressure is the kinetic energy per unit volume of a fluid. Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. It can also appear as a term in the incompressible Navier-Stokes equation whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aerodynamics
Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dynamics and its subfield of gas dynamics. The term ''aerodynamics'' is often used synonymously with gas dynamics, the difference being that "gas dynamics" applies to the study of the motion of all gases, and is not limited to air. The formal study of aerodynamics began in the modern sense in the eighteenth century, although observations of fundamental concepts such as aerodynamic drag were recorded much earlier. Most of the early efforts in aerodynamics were directed toward achieving heavier-than-air flight, which was first demonstrated by Otto Lilienthal in 1891. Since then, the use of aerodynamics through mathematical analysis, empirical approximations, wind tunnel experimentation, and computer simulations has formed a rational basis f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Drag Coefficient
In fluid dynamics, the drag coefficient (commonly denoted as: c_\mathrm, c_x or c_) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water. It is used in the drag equation in which a lower drag coefficient indicates the object will have less aerodynamic or hydrodynamic drag. The drag coefficient is always associated with a particular surface area. The drag coefficient of any object comprises the effects of the two basic contributors to fluid dynamic drag: skin friction and form drag. The drag coefficient of a lifting airfoil or hydrofoil also includes the effects of lift-induced drag. The drag coefficient of a complete structure such as an aircraft also includes the effects of interference drag. Definition The drag coefficient c_\mathrm d is defined as c_\mathrm d = \dfrac where: * F_\mathrm d is the drag force, which is by definition the force component in the direction of the flow vel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lift Coefficient
In fluid dynamics, the lift coefficient () is a dimensionless quantity that relates the lift generated by a lifting body to the fluid density around the body, the fluid velocity and an associated reference area. A lifting body is a foil or a complete foil-bearing body such as a fixed-wing aircraft. is a function of the angle of the body to the flow, its Reynolds number and its Mach number. The section lift coefficient refers to the dynamic lift characteristics of a two-dimensional foil section, with the reference area replaced by the foil chord. Abbott, Ira H., and Doenhoff, Albert E. von: ''Theory of Wing Sections''. Section 1.2 Definitions The lift coefficient ''C''L is defined by :C_\mathrm L \equiv \frac = = , where L\, is the lift force, S\, is the relevant surface area and q\, is the fluid dynamic pressure, in turn linked to the fluid density \rho\,, and to the flow speed u\,. The choice of the reference surface should be specified since it is arbitrary. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Neutral Point (aeronautics)
In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength. The longitudinal stability of an aircraft, also called pitch stability, refers to the aircraft's stability in its plane of symmetry about the lateral axis (the axis along the wingspan). It is an important aspect of the handling qualities of the aircraft, and one of the main factors determining the ease with which the pilot is able to maintain level flight. Longitudinal static stability refers to the aircraft's initial tendency on pitching. Dynamic stability refers to whether oscillations tend to increase, decrease or stay constant. Static stability If an aircraft is longitudinally statically stable, a small increase in angle of attack will create a nose-down pitching mom ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Longitudinal Static Stability
In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength. The longitudinal stability of an aircraft, also called pitch stability, refers to the aircraft's stability in its plane of symmetry about the lateral axis (the axis along the wingspan). It is an important aspect of the handling qualities of the aircraft, and one of the main factors determining the ease with which the pilot is able to maintain level flight. Longitudinal static stability refers to the aircraft's initial tendency on pitching. Dynamic stability refers to whether oscillations tend to increase, decrease or stay constant. Static stability If an aircraft is longitudinally statically stable, a small increase in angle of attack will create a nose-down pitching m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flight Dynamics
Flight dynamics in aviation and spacecraft, is the study of the performance, stability, and control of vehicles flying through the air or in outer space. It is concerned with how forces acting on the vehicle determine its velocity and attitude with respect to time. For a fixed-wing aircraft, its changing orientation with respect to the local air flow is represented by two critical angles, the angle of attack of the wing ("alpha") and the angle of attack of the vertical tail, known as the sideslip angle ("beta"). A sideslip angle will arise if an aircraft yaws about its centre of gravity and if the aircraft sideslips bodily, i.e. the centre of gravity moves sideways.Flightwise - Volume 2 - Aircraft Stability And Control, Chris Carpenter 1997, Airlife Publishing Ltd., , p.145 These angles are important because they are the principal source of changes in the aerodynamic forces and moments applied to the aircraft. Spacecraft flight dynamics involve three main forces: propulsive ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Aircraft Flight Mechanics
Aircraft flight mechanics are relevant to fixed wing ( gliders, aeroplanes) and rotary wing (helicopters) aircraft. An aeroplane (''airplane'' in US usage), is defined in ICAO Document 9110 as, "a power-driven heavier than air aircraft, deriving its lift chiefly from aerodynamic reactions on surface which remain fixed under given conditions of flight". Note that this definition excludes both dirigibles (because they derive lift from buoyancy rather than from airflow over surfaces), and ballistic rockets (because their lifting force is typically derived directly and entirely from near-vertical thrust). Technically, both of these could be said to experience "flight mechanics" in the more general sense of physical forces acting on a body moving through air; but they operate very differently, and are normally outside the scope of this term. Take-off A heavier-than-air craft (aircraft) can only fly if a series of aerodynamic forces come to bear. In regard to fixed wing aircraft, t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Roll Pitch Yaw Mnemonic
Roll or Rolls may refer to: Movement about the longitudinal axis * Roll angle (or roll rotation), one of the 3 angular degrees of freedom of any stiff body (for example a vehicle), describing motion about the longitudinal axis ** Roll (aviation), one of the aircraft principal axes of rotation of an aircraft (angle of tilt to the left or right measured from the longitudinal axis) ** Roll (ship motion), one of the ship motions' principal axes of rotation of a ship (angle of tilt to the port or starboard measured from the longitudinal axis) * Rolling ''manoeuvre'', a manoeuvre of any stiff body (for example a vehicle) around its roll axis: ** Roll, an aerobatic maneuver with an airplane, usually referring to an aileron roll, but sometimes instead a barrel roll, rudder roll or slow roll ** Kayak roll, a maneuver used to right a capsized kayak ** Roll program, an aerodynamic maneuver performed in a rocket launch * Roll rate (or roll velocity), the angular speed at which an aircraf ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planform (aeronautics)
The wing configuration of a fixed-wing aircraft (including both gliders and powered aeroplanes) is its arrangement of lifting and related surfaces. Aircraft designs are often classified by their wing configuration. For example, the Supermarine Spitfire is a conventional low wing cantilever monoplane of straight elliptical planform with moderate aspect ratio and slight dihedral. Many variations have been tried. Sometimes the distinction between them is blurred, for example the wings of many modern combat aircraft may be described either as cropped compound deltas with (forwards or backwards) swept trailing edge, or as sharply tapered swept wings with large leading edge root extensions (or LERX). Some are therefore duplicated here under more than one heading. This is particularly so for variable geometry and combined (closed) wing types. Most of the configurations described here have flown (if only very briefly) on full-size aircraft. A few theoretical designs are also notable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Longitudinal Static Stability
In flight dynamics, longitudinal stability is the stability of an aircraft in the longitudinal, or pitching, plane. This characteristic is important in determining whether an aircraft pilot will be able to control the aircraft in the pitching plane without requiring excessive attention or excessive strength. The longitudinal stability of an aircraft, also called pitch stability, refers to the aircraft's stability in its plane of symmetry about the lateral axis (the axis along the wingspan). It is an important aspect of the handling qualities of the aircraft, and one of the main factors determining the ease with which the pilot is able to maintain level flight. Longitudinal static stability refers to the aircraft's initial tendency on pitching. Dynamic stability refers to whether oscillations tend to increase, decrease or stay constant. Static stability If an aircraft is longitudinally statically stable, a small increase in angle of attack will create a nose-down pitching m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]