HOME
*





Picone Identity
In the field of ordinary differential equations, the Picone identity, named after Mauro Picone, is a classical result about homogeneous linear second order differential equations. Since its inception in 1910 it has been used with tremendous success in association with an almost immediate proof of the Sturm comparison theorem, a theorem whose proof took up many pages in Sturm's original memoir of 1836. It is also useful in studying the oscillation of such equations and has been generalized to other type of differential equations and difference equations. The Picone identity is used to prove the Sturm–Picone comparison theorem. Picone identity Suppose that ''u'' and ''v'' are solutions of the two homogeneous linear second order differential equations in self-adjoint form In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ordinary Differential Equation
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast with the term partial differential equation which may be with respect to ''more than'' one independent variable. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where , ..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of the unknown function of the variable . Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mauro Picone
Mauro Picone (2 May 1885 – 11 April 1977) was an Italian mathematician. He is known for the Picone identity, the Sturm-Picone comparison theorem and being the founder of the Istituto per le Applicazioni del Calcolo, presently named after him, the first applied mathematics institute ever founded.See , , and the references cited in this latter one. He was also an outstanding teacher of mathematical analysis: some of the best Italian mathematicians were among his pupils. Work Research activity Teaching activity Notable students: *Luigi Amerio *Renato Caccioppoli *Gianfranco Cimmino * Ennio de Giorgi *Gaetano Fichera *Carlo Miranda Selected publications * (Review of the whole volume I) (available from the "Edizione Nazionale Mathematica Italiana'"), reviewed by . *, (Review of the 2nd part of volume I) (available from the "Edizione Nazionale Mathematica Italiana'"). *, reviewed by and by . See also *Renato Caccioppoli *Lamberto Cesari * Ennio de Giorgi *Gaetano Fichera ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homogeneous Differential Equation
A differential equation can be homogeneous in either of two respects. A first order differential equation is said to be homogeneous if it may be written :f(x,y) \, dy = g(x,y) \, dx, where and are homogeneous functions of the same degree of and . In this case, the change of variable leads to an equation of the form :\frac = h(u) \, du, which is easy to solve by integration of the two members. Otherwise, a differential equation is homogeneous if it is a homogeneous function of the unknown function and its derivatives. In the case of linear differential equations, this means that there are no constant terms. The solutions of any linear ordinary differential equation of any order may be deduced by integration from the solution of the homogeneous equation obtained by removing the constant term. History The term ''homogeneous'' was first applied to differential equations by Johann Bernoulli in section 9 of his 1726 article ''De integraionibus aequationum differentialium'' (On t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm Comparison Theorem
Sturm (German for storm) may refer to: People * Sturm (surname), surname (includes a list) * Saint Sturm (died 779), 8th-century monk Food * Federweisser, known as ''Sturm'' in Austria, wine in the fermentation stage * Sturm Foods, an American dry grocery manufacturer Arts and media * ''Der Sturm'', early 20th-century German magazine covering the Expressionism movement * ''Der Sturm'', German title of Shakespeare's play '' The Tempest'' * ''Sturm'' (novella), a 1923 novella by Ernst Jünger * ''Sturm'', an album by The Notwist * Sturm, a fictional character in the ''Advance Wars'' video games * Sturm, a fictional character in '' The Books of Faerie'' series by Vertigo Comics Other uses * SK Sturm Graz, a football team based in Graz in Austria See also * Sturm Brightblade, a fictional character in the Dragonlance campaign setting * Sturm College of Law, the law school at the University of Denver * Sturm–Liouville theory, a mathematical theory concerning the solutions of ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Oscillation (differential Equation)
In mathematics, in the field of ordinary differential equations, a nontrivial solution to an ordinary differential equation :F(x,y,y',\ \dots,\ y^)=y^ \quad x \in spectrum of associated boundary value problems. Examples The differential equation :y'' + y = 0 is oscillating as sin(''x'') is a solution. Connection with spectral theory Oscillation theory was initiated by Jacques Charles François Sturm in his investigations of Sturm–Liouville problems from 1836. There he showed that the n'th eigenfunction of a Sturm–Liouville problem has precisely n-1 roots. For the one-dimensional Schrödinger equation The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. It is a key result in quantum mechanics, and its discovery was a significant landmark in the development of the ... the question about oscillation/non-oscillation answers the question whether the eigenvalues accumulate at the bottom of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two. Such relations are common; therefore, differential equations play a prominent role in many disciplines including engineering, physics, economics, and biology. Mainly the study of differential equations consists of the study of their solutions (the set of functions that satisfy each equation), and of the properties of their solutions. Only the simplest differential equations are solvable by explicit formulas; however, many properties of solutions of a given differential equation may be determined without computing them exactly. Often when a closed-form expression for the solutions is not available, solutions may be approximated numerically using computers. The theory of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Difference Equation
In mathematics, a recurrence relation is an equation according to which the nth term of a sequence of numbers is equal to some combination of the previous terms. Often, only k previous terms of the sequence appear in the equation, for a parameter k that is independent of n; this number k is called the ''order'' of the relation. If the values of the first k numbers in the sequence have been given, the rest of the sequence can be calculated by repeatedly applying the equation. In ''linear recurrences'', the th term is equated to a linear function of the k previous terms. A famous example is the recurrence for the Fibonacci numbers, F_n=F_+F_ where the order k is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients, because the coefficients of the linear function (1 and 1) are constants that do not depend on n. For these recurrences, one can express the general term of the sequence as a closed-form expression of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sturm–Picone Comparison Theorem
In mathematics, in the field of ordinary differential equations, the Sturm–Picone comparison theorem, named after Jacques Charles François Sturm and Mauro Picone, is a classical theorem which provides criteria for the oscillation and non-oscillation of solutions of certain linear differential equations in the real domain. Let , for be real-valued continuous functions on the interval and let #(p_1(x) y^\prime)^\prime + q_1(x) y = 0 #(p_2(x) y^\prime)^\prime + q_2(x) y = 0 be two homogeneous linear second order differential equations in self-adjoint form with :0 < p_2(x) \le p_1(x) and :q_1(x) \le q_2(x). Let be a non-trivial solution of (1) with successive roots at and and let be a non-trivial solution of (2). Then one of the following properties holds. *There exists an in such that or *there exists a in such that . The first part of the conclusion is due to Sturm (1836), while the second (alternative) part of the theorem is due to Picone (19 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-adjoint Form
In mathematics, and more specifically in abstract algebra, an element ''x'' of a *-algebra is self-adjoint if x^*=x. A self-adjoint element is also Hermitian, though the reverse doesn't necessarily hold. A collection ''C'' of elements of a star-algebra is self-adjoint if it is closed under the involution operation. For example, if x^*=y then since y^*=x^=x in a star-algebra, the set is a self-adjoint set even though ''x'' and ''y'' need not be self-adjoint elements. In functional analysis, a linear operator A : H \to H on a Hilbert space is called self-adjoint if it is equal to its own adjoint ''A''. See self-adjoint operator for a detailed discussion. If the Hilbert space is finite-dimensional and an orthonormal basis has been chosen, then the operator ''A'' is self-adjoint if and only if the matrix describing ''A'' with respect to this basis is Hermitian, i.e. if it is equal to its own conjugate transpose. Hermitian matrices are also called self-adjoint. In a dagger cat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Ordinary Differential Equations
In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast with the term partial differential equation which may be with respect to ''more than'' one independent variable. Differential equations A linear differential equation is a differential equation that is defined by a linear polynomial in the unknown function and its derivatives, that is an equation of the form :a_0(x)y +a_1(x)y' + a_2(x)y'' +\cdots +a_n(x)y^+b(x)=0, where , ..., and are arbitrary differentiable functions that do not need to be linear, and are the successive derivatives of the unknown function of the variable . Among ordinary differential equations, linear differential equations play a prominent role for several reasons. Most elementary and special functions that are encountered in physics and applied mathematics are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]