Optical Parametric Oscillation
   HOME
*



picture info

Optical Parametric Oscillation
An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave (called "pump") with frequency \omega_p into two output waves of lower frequency (\omega_s, \omega_i) by means of second- order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: \omega_s + \omega_i=\omega_p. For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, \omega_s=\omega_i=\omega_p/2, which can result in half-harmonic generation when signal and idler have the same polarization. The first optical parametric oscillator was demonstrated by Joseph A. Giordmaine and Robert C. Miller in 1965, five years after the invention of the laser, at Bell Labs. Optical parametric oscillators are used as coherent light s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Periodical Poling
Periodic poling is a formation of layers with alternate orientation in a birefringent material. The domains are regularly spaced, with period in a multiple of the desired wavelength of operation. The structure is designed to achieve quasi-phase-matching (QPM) in the material. Periodically poled crystals are frequently used as nonlinear optical materials. They are more efficient at second-harmonic generation than crystals of the same material without periodic structure. The material for the crystals is usually a wide band gap inorganic crystal, or in some cases a suitable organic polymer. Some popular materials in current use are potassium titanyl phosphate (KTP), lithium niobate, and lithium tantalate. The periodic structure is created in the crystal using a range of techniques. Pulsed electric field, electron bombardment, thermal pulsing, or other methods can be used to reposition the atoms in the lattice Lattice may refer to: Arts and design * Latticework, an ornamental cris ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hardware Random Number Generator
In computing, a hardware random number generator (HRNG) or true random number generator (TRNG) is a device that generates random numbers from a physical process, rather than by means of an algorithm. Such devices are often based on microscopic phenomena that generate low-level, statistically random "noise" signals, such as thermal noise, the photoelectric effect, involving a beam splitter, and other quantum phenomena. These stochastic processes are, in theory, completely unpredictable for as long as an equation governing such phenomena is unknown or uncomputable. This is in contrast to the paradigm of pseudo-random number generation commonly implemented in computer programs. A hardware random number generator typically consists of a transducer to convert some aspect of the physical phenomena to an electrical signal, an amplifier and other electronic circuitry to increase the amplitude of the random fluctuations to a measurable level, and some type of analog-to-digital conv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spontaneous Parametric Down Conversion
Spontaneous parametric down-conversion (also known as SPDC, parametric fluorescence or parametric scattering) is a nonlinear instant optical process that converts one photon of higher energy (namely, a pump photon), into a pair of photons (namely, a signal photon, and an idler photon) of lower energy, in accordance with the law of conservation of energy and law of conservation of momentum. It is an important process in quantum optics, for the generation of entangled photon pairs, and of single photons. Basic process A nonlinear crystal is used to produce pairs of photons from a photon beam. In accordance with the law of conservation of energy and law of conservation of momentum, the pairs have combined energies and momenta equal to the energy and momentum of the original photon. Because the index of refraction changes with frequency (dispersion), only certain triplets of frequencies will be phase-matched so that simultaneous energy and momentum conservation can be achieved. P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Entanglement
Quantum entanglement is the phenomenon that occurs when a group of particles are generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics not present in classical mechanics. Measurements of physical properties such as position, momentum, spin, and polarization performed on entangled particles can, in some cases, be found to be perfectly correlated. For example, if a pair of entangled particles is generated such that their total spin is known to be zero, and one particle is found to have clockwise spin on a first axis, then the spin of the other particle, measured on the same axis, is found to be anticlockwise. However, this behavior gives ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE