Opposition Surge
   HOME
*



picture info

Opposition Surge
The opposition surge (sometimes known as the opposition effect, opposition spike or Seeliger effect) is the brightening of a rough surface, or an object with many particles, when illuminated from directly behind the observer. The term is most widely used in astronomy, where generally it refers to the sudden noticeable increase in the brightness of a celestial body such as a planet, moon, or comet as its phase angle of observation approaches zero. It is so named because the reflected light from the Moon and Mars appear significantly brighter than predicted by simple Lambertian reflectance when at astronomical opposition. Two physical mechanisms have been proposed for this observational phenomenon: shadow hiding and coherent backscatter. Overview The phase angle is defined as the angle between the observer, the observed object and the source of light. In the case of the Solar System, the light source is the Sun, and the observer is generally on Earth. At zero phase angle, the Sun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Armstrong Heiligenschein
Armstrong may refer to: Places * Armstrong Creek (other), various places Antarctica * Armstrong Reef, Biscoe Islands Argentina * Armstrong, Santa Fe Australia * Armstrong, Victoria Canada * Armstrong, British Columbia * Armstrong, Ontario * Armstrong, Thunder Bay District, Ontario * Armstrong, Ontario (Indian settlement) United States * Armstrong, California * Armstrong, Delaware * Armstrong, Florida * Armstrong, Georgia * Armstrong, Illinois * Armstrong, Indiana * Armstrong, Iowa * Armstrong, Minnesota * Armstrong, Missouri * Armstrong, Oklahoma * Armstrong, Texas * Armstrong, Wisconsin * Armstrong County, Pennsylvania * Armstrong County, Texas * Armstrong Lake (Blue Earth County, Minnesota), a lake in Minnesota * Armstrong Township, Vanderburgh County, Indiana * Armstrong Township, Pennsylvania (other), more than one, including ** Armstrong Township, Indiana County, Pennsylvania ** Armstrong Township, Lycoming County, Pennsylvania * Louis Armstrong New ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Phase Angle (astronomy)
Phase angle in astronomical observations is the angle between the light incident onto an observed object and the light reflected from the object. In the context of astronomical observations, this is usually the angle Sun-object-observer. For terrestrial observations, "Sun–object–Earth" is often nearly the same thing as "Sun–object–observer", since the difference depends on the parallax, which in the case of observations of the Moon can be as much as 1°, or two full Moon diameters. With the development of space travel, as well as in hypothetical observations from other points in space, the notion of phase angle became independent of Sun and Earth. The etymology of the term is related to the notion of planetary phases, since the brightness of an object and its appearance as a "phase" is the function of the phase angle. The phase angle varies from 0° to 180°. The value of 0° corresponds to the position where the illuminator, the observer, and the object are collinear, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bidirectional Reflectance Function
The bidirectional reflectance distribution function (BRDF; f_(\omega_,\, \omega_) ) is a function of four real variables that defines how light is reflected at an opaque surface. It is employed in the optics of real-world light, in computer graphics algorithms, and in computer vision algorithms. The function takes an incoming light direction, \omega_, and outgoing direction, \omega_ (taken in a coordinate system where the surface normal \mathbf n lies along the ''z''-axis), and returns the ratio of reflected radiance exiting along \omega_ to the irradiance incident on the surface from direction \omega_. Each direction \omega is itself parameterized by azimuth angle \phi and zenith angle \theta, therefore the BRDF as a whole is a function of 4 variables. The BRDF has units sr−1, with steradians (sr) being a unit of solid angle. Definition The BRDF was first defined by Fred Nicodemus around 1965. The definition is: f_(\omega_,\, \omega_) \,=\, \frac \,=\, \frac\frac wher ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Albedo
Albedo (; ) is the measure of the diffuse reflection of sunlight, solar radiation out of the total solar radiation and measured on a scale from 0, corresponding to a black body that absorbs all incident radiation, to 1, corresponding to a body that reflects all incident radiation. Surface albedo is defined as the ratio of Radiosity (radiometry), radiosity ''J''e to the irradiance ''E''e (flux per unit area) received by a surface. The proportion reflected is not only determined by properties of the surface itself, but also by the spectral and angular distribution of solar radiation reaching the Earth's surface. These factors vary with atmospheric composition, geographic location, and time (see position of the Sun). While bi-hemispherical reflectance is calculated for a single angle of incidence (i.e., for a given position of the Sun), albedo is the directional integration of reflectance over all solar angles in a given period. The temporal resolution may range from seconds (as ob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mare (lunar Surface)
The lunar maria (; singular: mare ) are large, dark, basaltic plains on Earth's Moon, formed by ancient asteroid impacts on the far side on the Moon that triggered volcanic activity on the opposite (near) side. They were dubbed , Latin for 'seas', by early astronomers who mistook them for actual seas. They are less reflective than the "highlands" as a result of their iron-rich composition, and hence appear dark to the naked eye. The maria cover about 16% of the lunar surface, mostly on the side visible from Earth. The few maria on the far side are much smaller, residing mostly in very large craters. The traditional nomenclature for the Moon also includes one (ocean), as well as features with the names ('lake'), ('marsh'), and ('bay'). The last three are smaller than maria, but have the same nature and characteristics. The names of maria refer to sea features ( Mare Humorum, Mare Imbrium, Mare Insularum, Mare Nubium, Mare Spumans, Mare Undarum, Mare Vaporum, Oceanus Procell ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Asteroid
An asteroid is a minor planet of the inner Solar System. Sizes and shapes of asteroids vary significantly, ranging from 1-meter rocks to a dwarf planet almost 1000 km in diameter; they are rocky, metallic or icy bodies with no atmosphere. Of the roughly one million known asteroids the greatest number are located between the orbits of Mars and Jupiter, approximately 2 to 4 AU from the Sun, in the main asteroid belt. Asteroids are generally classified to be of three types: C-type, M-type, and S-type. These were named after and are generally identified with carbonaceous, metallic, and silicaceous compositions, respectively. The size of asteroids varies greatly; the largest, Ceres, is almost across and qualifies as a dwarf planet. The total mass of all the asteroids combined is only 3% that of Earth's Moon. The majority of main belt asteroids follow slightly elliptical, stable orbits, revolving in the same direction as the Earth and taking from three to six years to comple ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE