Okamoto–Uchiyama Cryptosystem
   HOME
*





Okamoto–Uchiyama Cryptosystem
The Okamoto–Uchiyama cryptosystem is a public key cryptosystem proposed in 1998 by Tatsuaki Okamoto and Shigenori Uchiyama. The system works in the multiplicative group of integers modulo n, (\mathbb/n\mathbb)^*, where ''n'' is of the form ''p''2''q'' and ''p'' and ''q'' are large primes. Operation Like many public key cryptosystems, this scheme works in the group (\mathbb/n\mathbb)^*. This scheme is homomorphic and hence malleable. Key generation A public/private key pair is generated as follows: # Generate two large primes p and q. # Compute n = p^2 q. # Choose a random integer g \in \ such that g^ \not\equiv 1 \mod p^2. # Compute h = g^n \bmod n. The public key is then (n,g,h) and the private key is (p,q). Encryption A message m < p can be encrypted with the public key (n,g,h) as follows. # Choose a random integer r \in \. # Compute c = g^m h^r \bmod n. The value c is the encryption of m.


< ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



picture info

Public Key Cryptosystem
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tatsuaki Okamoto
Tatsuaki (written: , or ) is a masculine Japanese given name. Notable people with the name include: *, Japanese judoka *, Japanese Go player *, Japanese woodworker and lacquerware artist See also *TATSUAKI, a fashion label by Dan Liu Dan Liu Kin Ming () also known as; is a Hong Kongese and Japanese Canadian fashion designer and producing apparel, accessories and fashions for men and women. He is also the founder and the creative director of TATSUAKI fashion label. He was ... {{given name Japanese masculine given names Masculine given names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Shigenori Uchiyama
Shigenori (written: , , , , , , or ) is a masculine Japanese given name. Notable people with the name include: *, Japanese writer *, Japanese footballer *, Japanese ''daimyō'' *, Japanese general *Shigenori Mori Shigenori Mori (born 9 May 1958) is a Japanese professional golfer. Mori played on the Japan Golf Tour The Japan Golf Tour ( ja, 日本ゴルフツアー機構) is a prominent golf tour. It was founded in 1973 and as of 2006 it offers the th ... (born 1958), Japanese golfer *, Japanese voice actor *, Japanese politician *, Japanese sumo wrestler *, Japanese actor and voice actor {{given name Japanese masculine given names ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multiplicative Group Of Integers Modulo N
In modular arithmetic, the integers coprime (relatively prime) to ''n'' from the set \ of ''n'' non-negative integers form a group under multiplication modulo ''n'', called the multiplicative group of integers modulo ''n''. Equivalently, the elements of this group can be thought of as the congruence classes, also known as ''residues'' modulo ''n'', that are coprime to ''n''. Hence another name is the group of primitive residue classes modulo ''n''. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo ''n''. Here ''units'' refers to elements with a multiplicative inverse, which, in this ring, are exactly those coprime to ''n''. This quotient group, usually denoted (\mathbb/n\mathbb)^\times, is fundamental in number theory. It is used in cryptography, integer factorization, and primality testing. It is an abelian, finite group whose order is given by Euler's totient function: , (\mathbb/n\mathbb)^\times, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Prime Number
A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways of writing it as a product, or , involve 5 itself. However, 4 is composite because it is a product (2 × 2) in which both numbers are smaller than 4. Primes are central in number theory because of the fundamental theorem of arithmetic: every natural number greater than 1 is either a prime itself or can be factorized as a product of primes that is unique up to their order. The property of being prime is called primality. A simple but slow method of checking the primality of a given number n, called trial division, tests whether n is a multiple of any integer between 2 and \sqrt. Faster algorithms include the Miller–Rabin primality test, which is fast but has a small chance of error, and the AKS primality test, which always pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public Key Cryptography
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Homomorphic Encryption
Homomorphic encryption is a form of encryption that permits users to perform computations on its encrypted data without first decrypting it. These resulting computations are left in an encrypted form which, when decrypted, result in an identical output to that produced had the operations been performed on the unencrypted data. Homomorphic encryption can be used for privacy-preserving outsourced storage and computation. This allows data to be encrypted and out-sourced to commercial cloud environments for processing, all while encrypted. For sensitive data, such as health care information, homomorphic encryption can be used to enable new services by removing privacy barriers inhibiting data sharing or increase security to existing services. For example, predictive analytics in health care can be hard to apply via a third party service provider due to medical data privacy concerns, but if the predictive analytics service provider can operate on encrypted data instead, these priva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Malleability (cryptography)
Malleability is a property of some cryptographic algorithms. An encryption algorithm is "malleable" if it is possible to transform a ciphertext into another ciphertext which decrypts to a related plaintext. That is, given an encryption of a plaintext m, it is possible to generate another ciphertext which decrypts to f(m), for a known function f, without necessarily knowing or learning m. Malleability is often an undesirable property in a general-purpose cryptosystem, since it allows an attacker to modify the contents of a message. For example, suppose that a bank uses a stream cipher to hide its financial information, and a user sends an encrypted message containing, say, "." If an attacker can modify the message on the wire, and can guess the format of the unencrypted message, the attacker could change the amount of the transaction, or the recipient of the funds, e.g. "". Malleability does not refer to the attacker's ability to read the encrypted message. Both before and after ta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extended Euclidean Algorithm
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's identity, which are integers ''x'' and ''y'' such that : ax + by = \gcd(a, b). This is a certifying algorithm, because the gcd is the only number that can simultaneously satisfy this equation and divide the inputs. It allows one to compute also, with almost no extra cost, the quotients of ''a'' and ''b'' by their greatest common divisor. also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when ''a'' and ''b'' are coprime. With that provision, ''x'' is the modular multiplicative inverse of ''a'' modulo ''b'', and ''y'' is the modular multiplicative inverse of ''b'' modul ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Discrete Logarithm
In mathematics, for given real numbers ''a'' and ''b'', the logarithm log''b'' ''a'' is a number ''x'' such that . Analogously, in any group ''G'', powers ''b''''k'' can be defined for all integers ''k'', and the discrete logarithm log''b'' ''a'' is an integer ''k'' such that . In number theory, the more commonly used term is index: we can write ''x'' = ind''r'' ''a'' (mod ''m'') (read "the index of ''a'' to the base ''r'' modulo ''m''") for ''r''''x'' ≡ ''a'' (mod ''m'') if ''r'' is a primitive root of ''m'' and gcd(''a'',''m'') = 1. Discrete logarithms are quickly computable in a few special cases. However, no efficient method is known for computing them in general. Several important algorithms in public-key cryptography, such as ElGamal base their security on the assumption that the discrete logarithm problem over carefully chosen groups has no efficient solution. Definition Let ''G'' be any group. Denote its group operation by mu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Semantic Security
In cryptography, a semantically secure cryptosystem is one where only negligible information about the plaintext can be feasibly extracted from the ciphertext. Specifically, any probabilistic, polynomial-time algorithm (PPTA) that is given the ciphertext of a certain message m (taken from any distribution of messages), and the message's length, cannot determine any partial information on the message with probability non-negligibly higher than all other PPTA's that only have access to the message length (and not the ciphertext). S. Goldwasser and S. MicaliProbabilistic encryption & how to play mental poker keeping secret all partial information Annual ACM Symposium on Theory of Computing, 1982. This concept is the computational complexity analogue to Shannon's concept of perfect secrecy. Perfect secrecy means that the ciphertext reveals no information at all about the plaintext, whereas semantic security implies that any information revealed cannot be feasibly extracted. Goldreich, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Residuosity Problem
The quadratic residuosity problem (QRP) in computational number theory is to decide, given integers a and N, whether a is a quadratic residue modulo N or not. Here N = p_1 p_2 for two unknown primes p_1 and p_2, and a is among the numbers which are not obviously quadratic non-residues (see below). The problem was first described by Gauss in his ''Disquisitiones Arithmeticae'' in 1801. This problem is believed to be computationally difficult. Several cryptographic methods rely on its hardness, see . An efficient algorithm for the quadratic residuosity problem immediately implies efficient algorithms for other number theoretic problems, such as deciding whether a composite N of unknown factorization is the product of 2 or 3 primes. Precise formulation Given integers a and T, a is said to be a ''quadratic residue modulo T'' if there exists an integer b such that :a \equiv b^2 \pmod T. Otherwise we say it is a quadratic non-residue. When T = p is a prime, it is customary to us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]