Oka Coherence Theorem
   HOME
*





Oka Coherence Theorem
In mathematics, the Oka coherence theorem, proved by , states that the sheaf \mathcal := \mathcal_ of germs of holomorphic functions on \mathbb^n over a complex manifold is coherent.In paper it was called the idéal de domaines indéterminés. See also * Cartan's theorems A and B * Several complex variables * GAGA * Oka–Weil theorem * Weierstrass preparation theorem In mathematics, the Weierstrass preparation theorem is a tool for dealing with analytic functions of several complex variables, at a given point ''P''. It states that such a function is, up to multiplication by a function not zero at ''P'', a p ... Note References * * * * * Theorems in complex analysis Theorems in complex geometry {{mathanalysis-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sheaf (mathematics)
In mathematics, a sheaf is a tool for systematically tracking data (such as sets, abelian groups, rings) attached to the open sets of a topological space and defined locally with regard to them. For example, for each open set, the data could be the ring of continuous functions defined on that open set. Such data is well behaved in that it can be restricted to smaller open sets, and also the data assigned to an open set is equivalent to all collections of compatible data assigned to collections of smaller open sets covering the original open set (intuitively, every piece of data is the sum of its parts). The field of mathematics that studies sheaves is called sheaf theory. Sheaves are understood conceptually as general and abstract objects. Their correct definition is rather technical. They are specifically defined as sheaves of sets or as sheaves of rings, for example, depending on the type of data assigned to the open sets. There are also maps (or morphisms) from one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Germ (mathematics)
In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions (or maps) and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed (the functions in question need not even be continuous); it is however necessary that the space on/in which the object is defined is a topological space, in order that the word ''local'' has some meaning. Name The name is derived from ''cereal germ'' in a continuation of the sheaf metaphor, as a germ is (locally) the "heart" of a function, as it is for a grain. Formal definition Basic definition Given a point ''x'' of a topological space ''X'', and two maps f, g: X \to Y (where ''Y'' is any set), then f and g define the same germ at ''x'' if ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  



MORE