HOME
*





ORF3c
ORF3c is a gene found in coronaviruses of the subgenus ''Sarbecovirus'', including SARS-CoV and SARS-CoV-2. It was first identified in the SARS-CoV-2 genome and encodes a 41 amino acid non-structural protein of unknown function. It is also present in the SARS-CoV genome, but was not recognized until the identification of the SARS-CoV-2 homolog. Nomenclature There has been significant confusion in the scientific literature around the nomenclature used for the accessory proteins of SARS-CoV-2, especially several overlapping genes with ORF3a. The predicted protein product of the ''ORF3c'' gene has at least once been referred to as "3b protein", but it is not to be confused with the non-homologous gene '' ORF3b''. It has also been described under the names ''ORF3h'' and ''ORF3a.iORF1''. The recommended nomenclature for SARS-CoV-2 uses the term ''ORF3c'' for this gene. Comparative genomics ORF3c is an overlapping gene whose open reading frame overlaps both ORF3a and ORF3d in the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ORF3a
ORF3a (previously known as X1 or U274) is a gene found in coronaviruses of the subgenus ''Sarbecovirus'', including SARS-CoV and SARS-CoV-2. It encodes an accessory protein about 275 amino acid residues long, which is thought to function as a viroporin. It is the largest accessory protein and was the first of the SARS-CoV accessory proteins to be described. Comparative genomics ORF3a is well conserved within the subgenus ''Sarbecovirus''. The protein has 73% sequence identity between SARS-CoV (274 residues) and SARS-CoV-2 (275 residues). Within the ORF3a open reading frame there are several overlapping genes in the genome: ORF3a, ORF3b, and (in SARS-CoV-2 only) ORF3c. In SARS-CoV-2, the overlap between ORF3a, ORF3c, and ORF3d potentially represents a rare example of all three possible reading frames of the same sequence region encoding functional proteins. Although ORF3a is present in ''Sarbecovirus'', it is absent in another ''Betacoronavirus'' subgenus, ''Embecovirus'', whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ORF3b
ORF3b is a gene found in coronaviruses of the subgenus ''Sarbecovirus'', encoding a short non-structural protein. It is present in both SARS-CoV (which causes the disease SARS) and SARS-CoV-2 (which causes COVID-19), though the protein product has very different lengths in the two viruses. The encoded protein is significantly shorter in SARS-CoV-2, at only 22 amino acid residues compared to 153-155 in SARS-CoV. Both the longer SARS-CoV and shorter SARS-CoV-2 proteins have been reported as interferon antagonists. It is unclear whether the SARS-CoV-2 gene expresses a functional protein. Nomenclature There has been significant confusion in the scientific literature around the nomenclature used for the accessory proteins of SARS-CoV-2, especially several overlapping genes with ORF3a. Due to differences in the genomes of SARS-CoV and SARS-CoV-2, two distinct open reading frames (ORFs) in the SARS-CoV-2 genome have been referred to as "ORF3b". In SARS-CoV, ORF3b is a gene of 155 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sarbecovirus
''Severe acute respiratory syndrome–related coronavirus'' (SARSr-CoV or SARS-CoV)The terms ''SARSr-CoV'' and ''SARS-CoV'' are sometimes used interchangeably, especially prior to the discovery of SARS-CoV-2. This may cause confusion when some publications refer to SARS-CoV-1 as ''SARS-CoV''. is a species of virus consisting of many known strains phylogenetically related to severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) that have been shown to possess the capability to infect humans, bats, and certain other mammals. These enveloped, positive-sense single-stranded RNA viruses enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. The SARSr-CoV species is a member of the genus '' Betacoronavirus'' and of the subgenus ''Sarbecovirus'' (SARS Betacoronavirus). Two strains of the virus have caused outbreaks of severe respiratory diseases in humans: severe acute respiratory syndrome coronavirus 1 (SARS-CoV or SARS-CoV-1), which caused th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


ORF3d
ORF3d is a gene found in SARS-CoV-2 (the virus that causes COVID-19) and at least one closely related coronavirus found in pangolins, though it is not found in other closely related viruses within the ''Sarbecovirus'' subgenus. It is 57 codons long and encodes a novel 57 amino acid residue protein of unknown function. At least two isoforms have been described, of which the shorter 33-residue form, ORF3d-2, may be more highly expressed, or even the only form expressed. It is reported to be antigenic and antibodies to the ORF3d protein occur in patients recovered from COVID-19. There is no homolog in the genome of the otherwise closely related SARS-CoV (which causes the disease SARS). Nomenclature There has been significant confusion in the scientific literature around the nomenclature used for the accessory proteins of SARS-CoV-2, especially several overlapping genes with ORF3a. Many scientific papers have referred to ORF3d and its protein product as ORF3b, due to confusion ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Viroporin
Viroporins are small and usually hydrophobic multifunctional viral proteins that modify cellular membranes, thereby facilitating virus release from infected cells. Viroporins are capable of assembling into oligomeric ion channels or pores in the host cell's membrane, rendering it more permeable and thus facilitating the exit of virions from the cell. Many viroporins also have additional effects on cellular metabolism and homeostasis mediated by protein-protein interactions with host cell proteins. Viroporins are not necessarily essential for viral replication, but do enhance growth rates. They are found in a variety of viral genomes but are particularly common in RNA viruses. Many viruses that cause human disease express viroporins. These viruses include hepatitis C virus, HIV-1, influenza A virus, poliovirus, respiratory syncytial virus, and SARS-CoV. Structure Viroporins are usually small - under 100 or 120 amino acid residues - and contain at least one region capable of fo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Transmembrane Domain
A transmembrane domain (TMD) is a membrane-spanning protein domain. TMDs generally adopt an alpha helix topological conformation, although some TMDs such as those in porins can adopt a different conformation. Because the interior of the lipid bilayer is hydrophobic, the amino acid residues in TMDs are often hydrophobic, although proteins such as membrane pumps and ion channels can contain polar residues. TMDs vary greatly in length, sequence, and hydrophobicity, adopting organelle-specific properties. Functions of transmembrane domains Transmembrane domains are known to perform a variety of functions. These include: * Anchoring transmembrane proteins to the membrane. *Facilitating molecular transport of molecules such as ions and proteins across biological membranes; usually hydrophilic residues and binding sites in the TMDs help in this process. *Signal transduction across the membrane; many transmembrane proteins, such as G protein-coupled receptors, receive extracellular ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amino Acid Residue
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers specifically polypeptides formed from sequences of amino acids, the monomers of the polymer. A single amino acid monomer may also be called a ''residue'' indicating a repeating unit of a polymer. Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond. By convention, a chain under 30 amino acids is often identified as a peptide, rather than a protein. To be able to perform their biological function, proteins fold into one or more specific spatial conformations driven by a number of non-covalent interactions such as hydrogen bonding, ionic interactions, Van der Waals forces, and hydrophobic packing. To understand the functions of proteins at a molecular level, it is often necessary to determine their three-dimensional structure. This is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ribosome Profiling
Ribosome profiling, or Ribo-Seq (also named ribosome footprinting), is an adaptation of a technique developed by Joan Steitz and Marilyn Kozak almost 50 years ago that Nicholas Ingolia and Jonathan Weissman adapted to work with next generation sequencing that uses specialized messenger RNA (mRNA) sequencing to determine which mRNAs are being actively translated. A related technique that can also be used to determine which mRNAs are being actively translated is the Translating Ribosome Affinity Purification (TRAP) methodology, which was developed by Nathaniel Heintz at Rockefeller University (in collaboration with Paul Greengard and Myriam Heiman). TRAP does not involve ribosome footprinting but provides cell type-specific information. Description It produces a “global snapshot” of all the ribosomes actively translating in a cell at a particular moment, known as a translatome. Consequently, this enables researchers to identify the location of translation start sites, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Purifying Selection
In natural selection, negative selection or purifying selection is the selective removal of alleles that are deleterious. This can result in stabilising selection through the purging of deleterious genetic polymorphisms that arise through random mutations. Purging of deleterious alleles can be achieved on the population genetics level, with as little as a single point mutation being the unit of selection. In such a case, carriers of the harmful point mutation have fewer offspring each generation, reducing the frequency of the mutation in the gene pool. In the case of strong negative selection on a locus, the purging of deleterious variants will result in the occasional removal of linked variation, producing a decrease in the level of variation surrounding the locus under selection. The incidental purging of non-deleterious alleles due to such spatial proximity to deleterious alleles is called background selection. This effect increases with lower mutation rate but decreases wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sequence Conservation
In evolutionary biology, conserved sequences are identical or similar sequences in nucleic acids ( DNA and RNA) or proteins across species ( orthologous sequences), or within a genome ( paralogous sequences), or between donor and receptor taxa ( xenologous sequences). Conservation indicates that a sequence has been maintained by natural selection. A highly conserved sequence is one that has remained relatively unchanged far back up the phylogenetic tree, and hence far back in geological time. Examples of highly conserved sequences include the RNA components of ribosomes present in all domains of life, the homeobox sequences widespread amongst Eukaryotes, and the tmRNA in Bacteria. The study of sequence conservation overlaps with the fields of genomics, proteomics, evolutionary biology, phylogenetics, bioinformatics and mathematics. History The discovery of the role of DNA in heredity, and observations by Frederick Sanger of variation between animal insulins in 1949, promp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bioinformatics
Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combines biology, chemistry, physics, computer science, information engineering, mathematics and statistics to analyze and interpret the biological data. Bioinformatics has been used for '' in silico'' analyses of biological queries using computational and statistical techniques. Bioinformatics includes biological studies that use computer programming as part of their methodology, as well as specific analysis "pipelines" that are repeatedly used, particularly in the field of genomics. Common uses of bioinformatics include the identification of candidates genes and single nucleotide polymorphisms ( SNPs). Often, such identification is made with the aim to better understand the genetic basis of disease, unique adaptations, desirable properties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Reading Frame
In molecular biology, a reading frame is a way of dividing the sequence of nucleotides in a nucleic acid ( DNA or RNA) molecule into a set of consecutive, non-overlapping triplets. Where these triplets equate to amino acids or stop signals during translation, they are called codons. A single strand of a nucleic acid molecule has a phosphoryl end, called the 5′-end, and a hydroxyl or 3′-end. These define the 5′→3′ direction. There are three reading frames that can be read in this 5′→3′ direction, each beginning from a different nucleotide in a triplet. In a double stranded nucleic acid, an additional three reading frames may be read from the other, complementary strand in the 5′→3′ direction along this strand. As the two strands of a double-stranded nucleic acid molecule are antiparallel, the 5′→3′ direction on the second strand corresponds to the 3′→5′ direction along the first strand. In general, at the most, one reading frame in a given se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]