Ontology Learning
Ontology learning (ontology extraction, ontology generation, or ontology acquisition) is the automatic or semi-automatic creation of ontology (information science), ontologies, including extracting the corresponding Domain of discourse, domain's terms and the relationships between the Conceptualization (information science), concepts that these terms represent from a Text corpus, corpus of natural language text, and encoding them with an ontology language for easy retrieval. As ontology engineering, building ontologies manually is extremely labor-intensive and time-consuming, there is great motivation to automate the process. Typically, the process starts by terminology extraction, extracting terms and concepts or noun phrases from plain text using linguistic processors such as part-of-speech tagging and phrase chunking. Then statistical or symbolic techniques are used to extract relation signatures, often based on pattern-based or definition-based hypernym extraction techniques. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ontology (information Science)
In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject. Every academic discipline or field creates ontologies to limit complexity and organize data into information and knowledge. Each uses ontological assumptions to frame explicit theories, research and applications. New ontologies may improve problem solving within that domain. Translating research papers within every field is a problem made easier when experts from different countries maintain a controlled vocabulary of jargon between each of their languages. For instance, the definition and ontology of economics is a primary concern in Marxist econo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Association Rule Learning
Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness.Piatetsky-Shapiro, Gregory (1991), ''Discovery, analysis, and presentation of strong rules'', in Piatetsky-Shapiro, Gregory; and Frawley, William J.; eds., ''Knowledge Discovery in Databases'', AAAI/MIT Press, Cambridge, MA. In any given transaction with a variety of items, association rules are meant to discover the rules that determine how or why certain items are connected. Based on the concept of strong rules, Rakesh Agrawal, Tomasz ImieliĆski and Arun Swami introduced association rules for discovering regularities between products in large-scale transaction data recorded by point-of-sale (POS) systems in supermarkets. For example, the rule \ \Rightarrow \ found in the sales data of a supermarket would indicate that if a customer buys ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Text Mining
Text mining, also referred to as ''text data mining'', similar to text analytics, is the process of deriving high-quality information from text. It involves "the discovery by computer of new, previously unknown information, by automatically extracting information from different written resources." Written resources may include websites, books, emails, reviews, and articles. High-quality information is typically obtained by devising patterns and trends by means such as statistical pattern learning. According to Hotho et al. (2005) we can distinguish between three different perspectives of text mining: information extraction, data mining, and a KDD (Knowledge Discovery in Databases) process. Text mining usually involves the process of structuring the input text (usually parsing, along with the addition of some derived linguistic features and the removal of others, and subsequent insertion into a database), deriving patterns within the structured data, and finally evaluation and inte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Natural Language Understanding
Natural-language understanding (NLU) or natural-language interpretation (NLI) is a subtopic of natural-language processing in artificial intelligence that deals with machine reading comprehension. Natural-language understanding is considered an AI-hard problem. There is considerable commercial interest in the field because of its application to automated reasoning, machine translation, question answering, news-gathering, text categorization, voice-activation, archiving, and large-scale content analysis. History The program STUDENT, written in 1964 by Daniel Bobrow for his PhD dissertation at MIT, is one of the earliest known attempts at natural-language understanding by a computer. Eight years after John McCarthy coined the term artificial intelligence, Bobrow's dissertation (titled ''Natural Language Input for a Computer Problem Solving System'') showed how a computer could understand simple natural language input to solve algebra word problems. A year later, in 1965, J ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Information Extraction
Information extraction (IE) is the task of automatically extracting structured information from unstructured and/or semi-structured machine-readable documents and other electronically represented sources. In most of the cases this activity concerns processing human language texts by means of natural language processing (NLP). Recent activities in multimedia document processing like automatic annotation and content extraction out of images/audio/video/documents could be seen as information extraction Due to the difficulty of the problem, current approaches to IE (as of 2010) focus on narrowly restricted domains. An example is the extraction from newswire reports of corporate mergers, such as denoted by the formal relation: :\mathrm(company_1, company_2, date), from an online news sentence such as: :''"Yesterday, New York based Foo Inc. announced their acquisition of Bar Corp."'' A broad goal of IE is to allow computation to be done on the previously unstructured data. A more sp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ontology (information Science)
In computer science and information science, an ontology encompasses a representation, formal naming, and definition of the categories, properties, and relations between the concepts, data, and entities that substantiate one, many, or all domains of discourse. More simply, an ontology is a way of showing the properties of a subject area and how they are related, by defining a set of concepts and categories that represent the subject. Every academic discipline or field creates ontologies to limit complexity and organize data into information and knowledge. Each uses ontological assumptions to frame explicit theories, research and applications. New ontologies may improve problem solving within that domain. Translating research papers within every field is a problem made easier when experts from different countries maintain a controlled vocabulary of jargon between each of their languages. For instance, the definition and ontology of economics is a primary concern in Marxist econo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Linguistics
Computational linguistics is an Interdisciplinarity, interdisciplinary field concerned with the computational modelling of natural language, as well as the study of appropriate computational approaches to linguistic questions. In general, computational linguistics draws upon linguistics, computer science, artificial intelligence, mathematics, logic, philosophy, cognitive science, cognitive psychology, psycholinguistics, anthropology and neuroscience, among others. Sub-fields and related areas Traditionally, computational linguistics emerged as an area of artificial intelligence performed by computer scientists who had specialized in the application of computers to the processing of a natural language. With the formation of the Association for Computational Linguistics (ACL) and the establishment of independent conference series, the field consolidated during the 1970s and 1980s. The Association for Computational Linguistics defines computational linguistics as: The term "comp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Automatic Taxonomy Construction
Automatic taxonomy construction (ATC) is the use of software programs to generate taxonomical classifications from a body of texts called a corpus. ATC is a branch of natural language processing, which in turn is a branch of artificial intelligence. A taxonomy (or taxonomical classification) is a scheme of classification, especially, a hierarchical classification, in which things are organized into groups or types. Among other things, a taxonomy can be used to organize and index knowledge (stored as documents, articles, videos, etc.), such as in the form of a library classification system, or a search engine taxonomy, so that users can more easily find the information they are searching for. Many taxonomies are hierarchies (and thus, have an intrinsic tree structure), but not all are. Manually developing and maintaining a taxonomy is a labor-intensive task requiring significant time and resources, including familiarity of or expertise in the taxonomy's domain (scope, subject, or ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semantic Parsing
Semantic parsing is the task of converting a natural language utterance to a logical form: a machine-understandable representation of its meaning. Semantic parsing can thus be understood as extracting the precise meaning of an utterance. Applications of semantic parsing include machine translation, question answering,Berant, Jonathan, et al"Semantic Parsing on Freebase from Question-Answer Pairs."EMNLP. Vol. 2. No. 5. 2013. ontology induction, automated reasoning, and code generation. The phrase was first used in the 1970s by Yorick Wilks as the basis for machine translation programs working with only semantic representations. In computer vision, semantic parsing is a process of segmentation for 3D objects. Types Shallow Shallow semantic parsing is concerned with identifying entities in an utterance and labelling them with the roles they play. Shallow semantic parsing is sometimes known as slot-filling or frame semantic parsing, since its theoretical basis comes from frame ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Semantic Role Labeling
In natural language processing, semantic role labeling (also called shallow semantic parsing or slot-filling) is the process that assigns labels to words or phrases in a sentence that indicates their semantic role in the sentence, such as that of an agent, goal, or result. It serves to find the meaning of the sentence. To do this, it detects the arguments associated with the predicate or verb of a sentence and how they are classified into their specific roles. A common example is the sentence "Mary sold the book to John." The agent is "Mary," the predicate is "sold" (or rather, "to sell,") the theme is "the book," and the recipient is "John." Another example is how "the book belongs to me" would need two labels such as "possessed" and "possessor" and "the book was sold to John" would need two other labels such as theme and recipient, despite these two clauses being similar to "subject" and "object" functions. History In 1968, the first idea for semantic role labeling was proposed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Kernel Method
In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). The general task of pattern analysis is to find and study general types of relations (for example clusters, rankings, principal components, correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in raw representation have to be explicitly transformed into feature vector representations via a user-specified ''feature map'': in contrast, kernel methods require only a user-specified ''kernel'', i.e., a similarity function over all pairs of data points computed using Inner products. The feature map in kernel machines is infinite dimensional but only requires a finite dimensional matrix from user-input according to the Representer theorem. Kernel machines are slow to compute for datasets larger than a couple of thousand examples without parallel processing. Kernel methods owe their name to t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |