Odlyzko
   HOME





Odlyzko
Andrew Michael Odlyzko (Andrzej Odłyżko) (born 23 July 1949) is a Polish people, Polish-United States, American mathematician and a former head of the University of Minnesota's Digital Technology Center and of the Minnesota Supercomputing Institute. He began his career in 1975 at Bell Telephone Laboratories, where he stayed for 26 years before joining the University of Minnesota in 2001. Work in mathematics Odlyzko received his B.S. and M.S. in mathematics from the California Institute of Technology and his Ph.D. from the Massachusetts Institute of Technology in 1975. In the field of mathematics he has published extensively on analytic number theory, computational number theory, cryptography, algorithms and Analysis of algorithms, computational complexity, combinatorics, probability, and error-correcting codes. In the early 1970s, he was a co-author (with D. Kahaner and Gian-Carlo Rota) of one of the founding papers of the modern umbral calculus. In 1985 he and Herman te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mertens Conjecture
In mathematics, the Mertens conjecture is the statement that the Mertens function M(n) is bounded by \pm\sqrt. Although now disproven, it had been shown to imply the Riemann hypothesis. It was conjectured by Thomas Joannes Stieltjes, in an 1885 letter to Charles Hermite (reprinted in ), and again in print by , and disproved by . It is a striking example of a mathematical conjecture proven false despite a large amount of computational evidence in its favor. Definition In number theory, the Mertens function is defined as : M(n) = \sum_ \mu(k), where μ(k) is the Möbius function; the Mertens conjecture is that for all ''n'' > 1, : , M(n), < \sqrt.


Disproof of the conjecture

Stieltjes claimed in 1885 to have proven a weaker result, namely that m(n) := M(n)/\sqrt was
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Odlyzko–Schönhage Algorithm
In mathematics, the Odlyzko–Schönhage algorithm is a fast algorithm for evaluating the Riemann zeta function at many points, introduced by . The main point is the use of the fast Fourier transform to speed up the evaluation of a finite Dirichlet series of length ''N'' at O(''N'') equally spaced values from O(''N''2) to O(''N''1+ε) steps (at the cost of storing O(''N''1+ε) intermediate values). The Riemann–Siegel formula used for calculating the Riemann zeta function with imaginary part ''T'' uses a finite Dirichlet series with about ''N'' = ''T''1/2 terms, so when finding about ''N'' values of the Riemann zeta function it is sped up by a factor of about ''T''1/2. This reduces the time to find the zeros of the zeta function with imaginary part at most ''T'' from about ''T''3/2+ε steps to about ''T''1+ε steps. The algorithm can be used not just for the Riemann zeta function, but also for many other functions given by Dirichlet series. The algorithm was used by to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Umbral Calculus
The term umbral calculus has two related but distinct meanings. In mathematics, before the 1970s, umbral calculus referred to the surprising similarity between seemingly unrelated polynomial equations and certain shadowy techniques used to prove them. These techniques were introduced in 1861 by John Blissard and are sometimes called Blissard's symbolic method. They are often attributed to Édouard Lucas (or James Joseph Sylvester), who used the technique extensively. The use of shadowy techniques was put on a solid mathematical footing starting in the 1970s, and the resulting mathematical theory is also referred to as "umbral calculus". History In the 1930s and 1940s, Eric Temple Bell attempted to set the umbral calculus on a rigorous footing, however his attempt in making this kind of argument logically rigorous was unsuccessful. The combinatorialist John Riordan in his book ''Combinatorial Identities'' published in the 1960s, used techniques of this sort extensively. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann Zeta Function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for and its analytic continuation elsewhere. The Riemann zeta function plays a pivotal role in analytic number theory and has applications in physics, probability theory, and applied statistics. Leonhard Euler first introduced and studied the function over the reals in the first half of the eighteenth century. Bernhard Riemann's 1859 article "On the Number of Primes Less Than a Given Magnitude" extended the Euler definition to a complex variable, proved its meromorphic continuation and functional equation, and established a relation between its zeros and the distribution of prime numbers. This paper also contained the Riemann hypothesis, a conjecture about the distribution of complex zeros of the Riemann zeta function that many mathematicians consider th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Harold Stark
Harold Mead Stark (born August 6, 1939) is an Americans, American mathematician, specializing in number theory. He is best known for his solution of the Carl Friedrich Gauss, Gauss class number 1 problem, in effect Stark–Heegner theorem, correcting and completing the earlier work of Kurt Heegner, and for Stark's conjecture. More recently, he collaborated with Audrey Terras to study Ihara zeta function, zeta functions in graph theory. He is currently on the faculty of the University of California, San Diego. Stark received his bachelor's degree from the California Institute of Technology in 1961 and his PhD from the University of California, Berkeley in 1964. He was on the faculty at the University of Michigan from 1964 to 1968, at the Massachusetts Institute of Technology from 1968 to 1980, and at the University of California, San Diego from 1980 to the present. Stark was elected to the American Academy of Arts and Sciences in 1983 and to the United States National Academy of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Herman Te Riele
Hermanus Johannes Joseph te Riele (born 5 January 1947) is a Dutch mathematician at CWI in Amsterdam with a specialization in computational number theory. He is known for proving the correctness of the Riemann hypothesis for the first 1.5 billion non-trivial zeros of the Riemann zeta function with Jan van de Lune and Dik Winter, for disproving the Mertens conjecture with Andrew Odlyzko, and for factoring large numbers of world record size. In 1987, he found a new upper bound for π(''x'') − Li(''x''). In 1970, Te Riele received an engineer's degree in mathematical engineering from Delft University of Technology and, in 1976, a PhD degree in mathematics and physics from University of Amsterdam The University of Amsterdam (abbreviated as UvA, ) is a public university, public research university located in Amsterdam, Netherlands. Established in 1632 by municipal authorities, it is the fourth-oldest academic institution in the Netherlan ... (1976). References * * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Economics Of Security
The economics of information security addresses the economic aspects of privacy and computer security. Economics of information security includes models of the strictly rational “homo economicus” as well as behavioral economics. Economics of securities addresses individual and organizational decisions and behaviors with respect to security and privacy as market decisions. Economics of security addresses a core question: why do agents choose technical risks when there exists technical solutions to mitigate security and privacy risks? Economics addresses not only this question, but also inform design decisions in security engineering. Emergence of economics of security National security is the canonical public good. The economic status of information security came to the intellectual fore around 2000. As is the case with innovations it arose simultaneously in multiple venues. In 2000, Ross Anderson wroteWhy Information Security is Hard Anderson explained that a significant ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tarnów
Tarnów () is a city in southeastern Poland with 105,922 inhabitants and a metropolitan area population of 269,000 inhabitants. The city is situated in the Lesser Poland Voivodeship. It is a major rail junction, located on the strategic east–west connection from Lviv to Kraków, and two additional lines, one of which links the city with the Slovakia, Slovak border. Tarnów is known for its traditional architecture of Poland, Polish architecture, which was influenced by foreign cultures and foreigners that once lived in the area, most notably Jews, Germans and Austrians. The Old Town, featuring 16th century tenements, houses and defensive walls, has been preserved. Tarnów is also the warmest city of Poland, with the highest long-term mean annual temperature in the whole country. Companies headquartered in the city include Poland's largest chemical industry company Grupa Azoty and defence industry company Zakłady Mechaniczne Tarnów, ZMT. The city is currently subdivided into ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Random Matrix
In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all of its entries are sampled randomly from a probability distribution. Random matrix theory (RMT) is the study of properties of random matrices, often as they become large. RMT provides techniques like mean-field theory, diagrammatic methods, the cavity method, or the replica method to compute quantities like traces, spectral densities, or scalar products between eigenvectors. Many physical phenomena, such as the spectrum of nuclei of heavy atoms, the thermal conductivity of a lattice, or the emergence of quantum chaos, can be modeled mathematically as problems concerning large, random matrices. Applications Physics In nuclear physics, random matrices were introduced by Eugene Wigner to model the nuclei of heavy atoms. Wigner postulated that the spacings between the lines in the spectrum of a heavy atom nucleus should resemble the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Combinatorics
Combinatorics is an area of mathematics primarily concerned with counting, both as a means and as an end to obtaining results, and certain properties of finite structures. It is closely related to many other areas of mathematics and has many applications ranging from logic to statistical physics and from evolutionary biology to computer science. Combinatorics is well known for the breadth of the problems it tackles. Combinatorial problems arise in many areas of pure mathematics, notably in algebra, probability theory, topology, and geometry, as well as in its many application areas. Many combinatorial questions have historically been considered in isolation, giving an ''ad hoc'' solution to a problem arising in some mathematical context. In the later twentieth century, however, powerful and general theoretical methods were developed, making combinatorics into an independent branch of mathematics in its own right. One of the oldest and most accessible parts of combinatorics ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Paul Erdős
Paul Erdős ( ; 26March 191320September 1996) was a Hungarian mathematician. He was one of the most prolific mathematicians and producers of mathematical conjectures of the 20th century. pursued and proposed problems in discrete mathematics, graph theory, number theory, mathematical analysis, approximation theory, set theory, and probability theory. Much of his work centered on discrete mathematics, cracking many previously unsolved problems in the field. He championed and contributed to Ramsey theory, which studies the conditions in which order necessarily appears. Overall, his work leaned towards solving previously open problems, rather than developing or exploring new areas of mathematics. Erdős published around 1,500 mathematical papers during his lifetime, a figure that remains unsurpassed. He was known both for his social practice of mathematics, working with more than 500 collaborators, and for his eccentric lifestyle; ''Time'' magazine called him "The Oddball's Oddba ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Erdős Number
The Erdős number () describes the "collaborative distance" between mathematician Paul Erdős and another person, as measured by authorship of mathematical papers. The same principle has been applied in other fields where a particular individual has collaborated with a large and broad number of peers. Overview Paul Erdős (1913–1996) was an influential Hungarian mathematician who, in the latter part of his life, spent a great deal of time writing papers with a large number of colleagues — more than 500 — working on solutions to outstanding mathematical problems. He published more papers during his lifetime (at least 1,525) than any other mathematician in history. (Leonhard Euler published more total pages of mathematics but fewer separate papers: about 800.) Erdős spent most of his career with no permanent home or job. He traveled with everything he owned in two suitcases, and would visit mathematicians with whom he wanted to collaborate, often unexpectedly, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]