OMG Particle
The Oh-My-God particle was an ultra-high-energy cosmic ray detected on 15 October 1991 by the Fly's Eye camera in Dugway Proving Ground, Utah, U.S. It is the highest-energy cosmic ray ever observed. This particle's energy was unexpected and called into question theories of that era about the origin and propagation of cosmic rays. Comparisons The ''Oh-My-God particle''s energy was estimated as , or . Although this amount is phenomenally large – far outstripping the highest energy that humans can generate – it is still far below the level of the Planck scale, where exotic physics is expected. Comparison to a photon The ''Oh-My-God particle'' had (100 quintillion) times the photon energy of visible light, equivalent to a baseball travelling at about . Its energy was 20 million times greater than the highest energy measured in electromagnetic radiation emitted by an extragalactic object: The blazar Markarian 501. Comparison to a proton Assuming it was a pro ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Higgs Boson
The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge, that couples to (interacts with) mass. It is also very unstable, decaying into other particles almost immediately. The Higgs field is a scalar field, with two neutral and two electrically charged components that form a complex doublet of the weak isospin SU(2) symmetry. Its " Mexican hat-shaped" potential leads it to take a nonzero value ''everywhere'' (including otherwise empty space), which breaks the weak isospin symmetry of the electroweak interaction, and via the Higgs mechanism gives mass to many particles. Both the field and the boson are named after physicist Peter Higgs, who in 1964, along ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lorentz Factor
The Lorentz factor or Lorentz term is a quantity expressing how much the measurements of time, length, and other physical properties change for an object while that object is moving. The expression appears in several equations in special relativity, and it arises in derivations of the Lorentz transformations. The name originates from its earlier appearance in Lorentzian electrodynamics – named after the Dutch physicist Hendrik Lorentz. It is generally denoted (the Greek lowercase letter gamma). Sometimes (especially in discussion of superluminal motion) the factor is written as (Greek uppercase-gamma) rather than . Definition The Lorentz factor is defined as :\gamma = \frac = \frac = \frac , where: *''v'' is the relative velocity between inertial reference frames, *''c'' is the ''speed of light in a vacuum'', * is the ratio of ''v'' to ''c'', *''t'' is coordinate time, * is the proper time for an observer (measuring time intervals in the observer's own frame). This is th ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
1991 In Science
The year 1991 in science and technology involved many significant events, some listed below. Astronomy and space exploration * May 18 – Helen Sharman becomes the first British person in space, flying with the Soyuz TM-12 mission. * October 29 – The ''Galileo'' probe becomes the first spacecraft to visit an asteroid (951 Gaspra). * Steven Balbus and John F. Hawley publish their insights on magnetorotational instability. * Asteroid 6859 Datemasamune is discovered by Masahiro Koishikawa. * Asteroid 11514 Tsunenaga is discovered by Masahiro Koishikawa. * There are four lunar eclipses: three penumbral on January 30, July 26, and June 27, and one minor partial lunar eclipse on December 21. * There are two solar eclipses: one annular eclipse on January 15, and a very long total eclipse on July 11 (lasting 6 minutes and 53 seconds). Chemistry * Carbon nanotubes discovered in the insoluble material of arc-burned graphite rods by Sumio Iijima of NEC. Computer science * Fe ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cosmic Rays
Cosmic rays are high-energy particles or clusters of particles (primarily represented by protons or atomic nuclei) that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk is deflected off into space by the magnetosphere or the heliosphere. Cosmic rays were discovered by Victor Hess in 1912 in balloon experiments, for which he was awarded the 1936 Nobel Prize in Physics. Direct measurement of cosmic rays, especially at lower energies, has been possible since the launch of the first satellites in the late 1950s. Particle detectors similar to those used in nuclear and high-energy physics are used on satellites and space probes for research into cosmic rays. Data from the Fermi Space Telescope (2013) have been interpreted as evidence ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Ursa Major
Ursa Major (; also known as the Great Bear) is a constellation in the northern sky, whose associated mythology likely dates back into prehistory. Its Latin name means "greater (or larger) bear," referring to and contrasting it with nearby Ursa Minor, the lesser bear. In antiquity, it was one of the original 48 constellations listed by Ptolemy in the 2nd century AD, drawing on earlier works by Greek, Egyptian, Babylonian, and Assyrian astronomers. Today it is the third largest of the 88 modern constellations. Ursa Major is primarily known from the asterism of its main seven stars, which has been called the "Big Dipper," "the Wagon," "Charles's Wain," or "the Plough," among other names. In particular, the Big Dipper's stellar configuration mimics the shape of the "Little Dipper." Two of its stars, named Dubhe and Merak ( α Ursae Majoris and β Ursae Majoris), can be used as the navigational pointer towards the place of the current northern pole star, Polaris in Ursa Mino ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Telescope Array Project
The Telescope Array project is an international collaboration involving research and educational institutions in Japan, The United States, Russia, South Korea, and Belgium. The experiment is designed to observe air showers induced by ultra-high-energy cosmic ray using a combination of ground array and air-fluorescence techniques. It is located in the high desert in Millard County, Utah, United States, at about above sea level. Overview The Telescope Array observatory is a hybrid detector system consisting of both an array of 507 scintillation surface detectors (SD) which measure the distribution of charged particles at the Earth's surface, and three fluorescence stations which observe the night sky above the SD array.T. AbuZayyad et al.,The surface detector array of the Telescope Array experiment Nuclear Instruments and Methods in Physics Research Section A: (2012) vol. 689 Each fluorescence station is also accompanied by a LIDAR system for atmospheric monitoring.M. Chikawa et ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Age Of The Universe
In physical cosmology, the age of the universe is the time elapsed since the Big Bang. Astronomers have derived two different measurements of the age of the universe: a measurement based on direct observations of an early state of the universe, which indicate an age of billion years as interpreted with the Lambda-CDM concordance model as of 2018; and a measurement based on the observations of the local, modern universe, which suggest a younger age. The uncertainty of the first kind of measurement has been narrowed down to 20 million years, based on a number of studies which all show similar figures for the age and which include studies of the microwave background radiation by the ''Planck'' spacecraft, the Wilkinson Microwave Anisotropy Probe and other space probes. Measurements of the cosmic background radiation give the cooling time of the universe since the Big Bang, and measurements of the expansion rate of the universe can be used to calculate its approxi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Universe Today
Universe Today (U.T.) is a popular North American-based non-commercial space and astronomy news website. The domain was registered on December 30, 1998, and the website went live in March 1999, founded by Canadian Fraser Cain. The ''Universe Today'' assumed its current form on July 24, 2003, featuring astronomy news and space-related issues. By early September 2005, the forum section merged with ''Bad Astronomy'' as a combined site with the BAUT forum. During April 2011, the Association of British Science Writers noted that ''Universe Today'' decided not to make preparations for reporting on embargoed stories until they are public knowledge. Emily Lakdawalla said that she relies on ''Universe Today'' and ''Bad Astronomy'' to "give ... an independent look at big news stories". Publications ''Universe Today'' has published two books, which are available both as e-books and on physical media: * * See also * ''Astronomy Cast'' * ''Space.com'' * ''The Space Show ''The ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Large Hadron Collider
The Large Hadron Collider (LHC) is the world's largest and highest-energy particle collider. It was built by the European Organization for Nuclear Research (CERN) between 1998 and 2008 in collaboration with over 10,000 scientists and hundreds of universities and laboratories, as well as more than 100 countries. It lies in a tunnel in circumference and as deep as beneath the France–Switzerland border near Geneva. The first collisions were achieved in 2010 at an energy of 3.5 teraelectronvolts (TeV) per beam, about four times the previous world record. After upgrades it reached 6.5 TeV per beam (13 TeV total collision energy). At the end of 2018, it was shut down for three years for further upgrades. The collider has four crossing points where the accelerated particles collide. Seven detectors, each designed to detect different phenomena, are positioned around the crossing points. The LHC primarily collides proton beams, but it can also accelerate beams of heavy ion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Available Energy (particle Collision)
In particle physics, the available energy is the energy in a particle collision available to produce new matter from the kinetic energy of the colliding particles. See also *Threshold energy *Matter creation References Particle physics {{particle-stub ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Particle Accelerator
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle physics. The largest accelerator currently active is the Large Hadron Collider (LHC) near Geneva, Switzerland, operated by the CERN. It is a collider accelerator, which can accelerate two beams of protons to an energy of 6.5 TeV and cause them to collide head-on, creating center-of-mass energies of 13 TeV. Other powerful accelerators are, RHIC at Brookhaven National Laboratory in New York and, formerly, the Tevatron at Fermilab, Batavia, Illinois. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |