O'Connell Effect
   HOME
*





O'Connell Effect
The O'Connell effect is an asymmetry in the photometric light curve of certain close eclipsing binary stars. It was named after the astronomer Daniel Joseph Kelly O'Connell, SJ of Riverview College in New South Wales who in 1951 studied this phenomenon and distinguished it from the so-called periastron effect described by earlier authors, as it does not necessarily appear near the periastron, when tidal effects and an increase in mutual radiation may cause an increase in luminosity. The effect The out-of-eclipse brightness maxima of some binary stars are unequally high. This is contrary to expectations that the observed luminosity of an eclipsing binary should be the same when its components switch positions every half period. The maximum following the primary minimum is nearly always brighter than the preceding one. This is called the positive O'Connell effect, the reverse case is referred to as the negative O'Connell effect. The difference increases with the ellipticity of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Photometry (astronomy)
Photometry, from Greek '' photo-'' ("light") and '' -metry'' ("measure"), is a technique used in astronomy that is concerned with measuring the flux or intensity of light radiated by astronomical objects. This light is measured through a telescope using a photometer, often made using electronic devices such as a CCD photometer or a photoelectric photometer that converts light into an electric current by the photoelectric effect. When calibrated against standard stars (or other light sources) of known intensity and colour, photometers can measure the brightness or apparent magnitude of celestial objects. The methods used to perform photometry depend on the wavelength region under study. At its most basic, photometry is conducted by gathering light and passing it through specialized photometric optical bandpass filters, and then capturing and recording the light energy with a photosensitive instrument. Standard sets of passbands (called a photometric system) are defined to allow a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Density
Density (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' can also be used. Mathematically, density is defined as mass divided by volume: : \rho = \frac where ''ρ'' is the density, ''m'' is the mass, and ''V'' is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight. For a pure substance the density has the same numerical value as its mass concentration. Different materials usually have different densities, and density may be relevant to buoyancy, purity and packaging. Osmium and iridium are the densest known elements at standard conditions for temperature and pressure. To simplify comparisons of density across different s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unsolved Problems In Astronomy
This article is a list of notable unsolved problems in astronomy. Some of these unsolved problems in astronomy are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result. The others are experimental, meaning that there is a difficulty in creating an experiment to test a proposed theory or investigate a phenomenon in greater detail. Some pertain to one-off events, unusual occurrences that have not repeated and whose causes therefore remain unclear. Planetary astronomy Exoplanetary * How unusual is our Solar System? Some observed planetary systems contain Super-Earths and Hot Jupiters that orbit very close to their stars (even closer than Mercury). Systems with Jupiter-like planets in Jupiter-like orbits appear to be rare. Is it because of our lack of data, given the difficulty of observing exoplanets? Or can it be explained by the grand tack hypothesis? Solar system * Orbiting bodies and rotation: ** Are there ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Binary Stars
A binary star is a system of two stars that are gravitationally bound to and in orbit around each other. Binary stars in the night sky that are seen as a single object to the naked eye are often resolved using a telescope as separate stars, in which case they are called ''visual binaries''. Many visual binaries have long orbital periods of several centuries or millennia and therefore have orbits which are uncertain or poorly known. They may also be detected by indirect techniques, such as spectroscopy (''spectroscopic binaries'') or astrometry (''astrometric binaries''). If a binary star happens to orbit in a plane along our line of sight, its components will eclipse and transit each other; these pairs are called ''eclipsing binaries'', or, together with other binaries that change brightness as they orbit, ''photometric binaries''. If components in binary star systems are close enough they can gravitationally distort their mutual outer stellar atmospheres. In some cases, these ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


CX Canis Majoris
CX CMa (CX Canis Majoris) is a blue variable star in the Canis Major constellation. Discovery of this variable is usually credited to German Astronomer Cuno Hoffmeister in 1931, although this remains uncertain. It is an eclipsing binary of Algol ( detached) whose magnitude varies between 9.9 and 10.4 with a period of 0.95462500 day (22.911000 hour). The variability was first discovered in 1931. Doubts arose because of scatter in the data and the small amplitude, but the discovery was confirmed by 1949. Its Algol-type light curve exhibits the O'Connell effect The O'Connell effect is an asymmetry in the photometric light curve of certain close eclipsing binary stars. It was named after the astronomer Daniel Joseph Kelly O'Connell, SJ of Riverview College in New South Wales who in 1951 studied this phe ..., meaning that there is a magnitude difference between subsequent maxima. The temperature of the secondary star has been estimated at about 10,600 K and its m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


W Crucis
W Crucis is a single-lined eclipsing variable star system in the constellation Crux. It has a spectral class of F8/G1Ia/abe indicating a yellow supergiant with emission lines in its spectrum. W Crucis varies in brightness between magnitude 8.18 and 9.01 over a period of 198.5 days. Its light curve has been observed to be asymmetric with subsequent maxima differing in height, which is described as the so-called O'Connell effect. A secondary minimum is observed when the brightness drops to magnitude 8.5. The shape and duration of the eclipses show that the two stars are detached and that there is an accretion disk around the primary, more massive, star. Spectral lines can only be seen for one of the stars, a yellow supergiant. The other, more massive, star is hidden within an accretion disk of material stripped from the supergiant. The hidden star has properties that suggest it is a mid-B main sequence star. The two are separated by , about . The hot main sequ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Coriolis Force
In physics, the Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise (or counterclockwise) rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term ''Coriolis force'' began to be used in connection with meteorology. Newton's laws of motion describe the motion of an object in an inertial (non-accelerating) frame of reference. When Newton's laws are transformed to a rotating frame of reference, the Coriolis and centrifugal accelerations appe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Starspot
Starspots are stellar phenomena, so-named by analogy with sunspots. Spots as small as sunspots have not been detected on other stars, as they would cause undetectably small fluctuations in brightness. The commonly observed starspots are in general much larger than those on the Sun: up to about 30% of the stellar surface may be covered, corresponding to starspots 100 times larger than those on the Sun. Detection and measurements To detect and measure the extent of starspots one uses several types of methods. *For rapidly rotating stars – Doppler imaging and Zeeman-Doppler imaging. With the Zeeman-Doppler imaging technique the direction of the magnetic field on stars can be determined since spectral lines are split according to the Zeeman effect, revealing the direction and magnitude of the field. *For slowly rotating stars – Line Depth Ratio (LDR). Here one measures two different spectral lines, one sensitive to temperature and one which is not. Since starspots have a low ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




CG Cygni
CG Cygni is a ternary star system composed of main-sequence stars in the constellation of Cygnus about away. System The star CG Cygni A (BD+34 4217A) itself is a close binary system with ongoing mass transfer between components. The orbital period of the binary is currently increasing. An additional third body (either star or planet) was suspected to exist in the system with an orbital period of 15.9-51 years, creating cyclic period variations of the binary. It was finally confirmed as the star CG Cygni B (BD+34 4217B) in 2020, at a 1.16 arcsecond separation from the primary. Properties The primary, BD+34 4217Aa, has a large number of starspots covering up to 18% of its surface. These are located in low latitudes, usually perpendicular to the line connecting the stars Aa and Ab, although reversal of the starspots positions was detected in 1991, 2003 and 2008. References {{Stars of Cygnus Triple star systems RS Canum Venaticorum variables Cygnus (constel ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electromagnetic Spectrum
The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from below one hertz to above 1025 hertz, corresponding to wavelengths from thousands of kilometers down to a fraction of the size of an atomic nucleus. This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. There is no known limit for long and short wavelengths. Extreme ultr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Flattening
Flattening is a measure of the compression of a circle or sphere along a diameter to form an ellipse or an ellipsoid of revolution (spheroid) respectively. Other terms used are ellipticity, or oblateness. The usual notation for flattening is and its definition in terms of the semi-axes of the resulting ellipse or ellipsoid is :: \mathrm = f =\frac . The ''compression factor'' is \frac\,\! in each case; for the ellipse, this is also its aspect ratio. Definitions There are three variants of flattening; when it is necessary to avoid confusion, the main flattening is called the first flattening.Torge, W. (2001). ''Geodesy'' (3rd edition). de Gruyter. and online web textsOsborne, P. (2008). The Mercator Projections'' Chapter 5.Rapp, Richard H. (1991). ''Geometric Geodesy, Part I''. Dept. of Geodetic Science and Surveying, Ohio State Univ., Columbus, Ohio/ref> In the following, is the larger dimension (e.g. semimajor axis), whereas is the smaller (semiminor axis). All flatt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Light Curve
In astronomy, a light curve is a graph of light intensity of a celestial object or region as a function of time, typically with the magnitude of light received on the y axis and with time on the x axis. The light is usually in a particular frequency interval or band. Light curves can be periodic, as in the case of eclipsing binaries, Cepheid variables, other periodic variables, and transiting extrasolar planets, or aperiodic, like the light curve of a nova, a cataclysmic variable star, a supernova or a microlensing event or binary as observed during occultation events. The study of the light curve, together with other observations, can yield considerable information about the physical process that produces it or constrain the physical theories about it. Variable stars Graphs of the apparent magnitude of a variable star over time are commonly used to visualise and analyse their behaviour. Although the categorisation of variable star types is increasingly done from their s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]