Novikov Conjecture
   HOME
*





Novikov Conjecture
The Novikov conjecture is one of the most important unsolved problems in topology. It is named for Sergei Novikov who originally posed the conjecture in 1965. The Novikov conjecture concerns the homotopy invariance of certain polynomials in the Pontryagin classes of a manifold, arising from the fundamental group. According to the Novikov conjecture, the ''higher signatures'', which are certain numerical invariants of smooth manifolds, are homotopy invariants. The conjecture has been proved for finitely generated abelian groups. It is not yet known whether the Novikov conjecture holds true for all groups. There are no known counterexamples to the conjecture. Precise formulation of the conjecture Let G be a discrete group and BG its classifying space, which is an Eilenberg–MacLane space of type K(G,1), and therefore unique up to homotopy equivalence as a CW complex. Let :f\colon M\rightarrow BG be a continuous map from a closed oriented n-dimensional manifold M to BG, and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Topology
In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, tearing, gluing, or passing through itself. A topological space is a set endowed with a structure, called a '' topology'', which allows defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean spaces, and, more generally, metric spaces are examples of a topological space, as any distance or metric defines a topology. The deformations that are considered in topology are homeomorphisms and homotopies. A property that is invariant under such deformations is a topological property. Basic examples of topological properties are: the dimension, which allows distinguishing between a line and a surface; compactness, which allows distinguishing between a line and a circle; co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fundamental Class
In mathematics, the fundamental class is a homology class 'M''associated to a connected orientable compact manifold of dimension ''n'', which corresponds to the generator of the homology group H_n(M,\partial M;\mathbf)\cong\mathbf . The fundamental class can be thought of as the orientation of the top-dimensional simplices of a suitable triangulation of the manifold.In past years mathematics.... Definition Closed, orientable When ''M'' is a connected orientable closed manifold of dimension ''n'', the top homology group is infinite cyclic: H_n(M,\mathbf) \cong \mathbf, and an orientation is a choice of generator, a choice of isomorphism \mathbf \to H_n(M,\mathbf). The generator is called the fundamental class. If ''M'' is disconnected (but still orientable), a fundamental class is the direct sum of the fundamental classes for each connected component (corresponding to an orientation for each component). In relation with de Rham cohomology it represents ''integration over M'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Conjectures
In mathematics, a conjecture is a conclusion or a proposition that is proffered on a tentative basis without proof. Some conjectures, such as the Riemann hypothesis (still a conjecture) or Fermat's Last Theorem (a conjecture until proven in 1995 by Andrew Wiles), have shaped much of mathematical history as new areas of mathematics are developed in order to prove them. Important examples Fermat's Last Theorem In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, ''b'', and ''c'' can satisfy the equation ''a^n + b^n = c^n'' for any integer value of ''n'' greater than two. This theorem was first conjectured by Pierre de Fermat in 1637 in the margin of a copy of '' Arithmetica'', where he claimed that he had a proof that was too large to fit in the margin. The first successful proof was released in 1994 by Andrew Wiles, and formally published in 1995, after 358 years of effort by mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Theory
In mathematics, homotopy theory is a systematic study of situations in which maps can come with homotopies between them. It originated as a topic in algebraic topology but nowadays is studied as an independent discipline. Besides algebraic topology, the theory has also been used in other areas of mathematics such as algebraic geometry (e.g., A1 homotopy theory) and category theory (specifically the study of higher categories). Concepts Spaces and maps In homotopy theory and algebraic topology, the word "space" denotes a topological space. In order to avoid pathologies, one rarely works with arbitrary spaces; instead, one requires spaces to meet extra constraints, such as being compactly generated, or Hausdorff, or a CW complex. In the same vein as above, a " map" is a continuous function, possibly with some extra constraints. Often, one works with a pointed space -- that is, a space with a "distinguished point", called a basepoint. A pointed map is then a map which pre ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometric Topology
In mathematics, geometric topology is the study of manifolds and maps between them, particularly embeddings of one manifold into another. History Geometric topology as an area distinct from algebraic topology may be said to have originated in the 1935 classification of lens spaces by Reidemeister torsion, which required distinguishing spaces that are homotopy equivalent but not homeomorphic. This was the origin of ''simple'' homotopy theory. The use of the term geometric topology to describe these seems to have originated rather recently. Differences between low-dimensional and high-dimensional topology Manifolds differ radically in behavior in high and low dimension. High-dimensional topology refers to manifolds of dimension 5 and above, or in relative terms, embeddings in codimension 3 and above. Low-dimensional topology is concerned with questions in dimensions up to 4, or embeddings in codimension up to 2. Dimension 4 is special, in that in some respects (topo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Jim Stasheff
James Dillon Stasheff (born January 15, 1936, New York City) is an American mathematician, a professor emeritus of mathematics at the University of North Carolina at Chapel Hill. He works in algebraic topology and algebra as well as their applications to physics. Biography Stasheff did his undergraduate studies in mathematics at the University of Michigan, graduating in 1956. Stasheff then began his graduate studies at Princeton University; his notes for a 1957 course by John Milnor on characteristic classes first appeared in mimeographed form and later in 1974 in revised form book with Stasheff as a co-author. After his second year at Princeton, he moved to Oxford University on a Marshall Scholarship. Two years later in 1961, with a pregnant wife, needing an Oxford degree to get reimbursed for his return trip to the US, and yet still feeling attached to Princeton, he split his thesis into two parts (one topological, the other algebraic) and earned two doctorates, a D.Phil. from Ox ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


John Milnor
John Willard Milnor (born February 20, 1931) is an American mathematician known for his work in differential topology, algebraic K-theory and low-dimensional holomorphic dynamical systems. Milnor is a distinguished professor at Stony Brook University and one of the five mathematicians to have won the Fields Medal, the Wolf Prize, and the Abel Prize (the others being Serre, Thompson, Deligne, and Margulis.) Early life and career Milnor was born on February 20, 1931, in Orange, New Jersey. His father was J. Willard Milnor and his mother was Emily Cox Milnor. As an undergraduate at Princeton University he was named a Putnam Fellow in 1949 and 1950 and also proved the Fáry–Milnor theorem when he was only 19 years old. Milnor graduated with an A.B. in mathematics in 1951 after completing a senior thesis, titled "Link groups", under the supervision of Robert H. Fox. He remained at Princeton to pursue graduate studies and received his Ph.D. in mathematics in 1954 after completi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Princeton University Press
Princeton University Press is an independent publisher with close connections to Princeton University. Its mission is to disseminate scholarship within academia and society at large. The press was founded by Whitney Darrow, with the financial support of Charles Scribner, as a printing press to serve the Princeton community in 1905. Its distinctive building was constructed in 1911 on William Street in Princeton. Its first book was a new 1912 edition of John Witherspoon's ''Lectures on Moral Philosophy.'' History Princeton University Press was founded in 1905 by a recent Princeton graduate, Whitney Darrow, with financial support from another Princetonian, Charles Scribner II. Darrow and Scribner purchased the equipment and assumed the operations of two already existing local publishers, that of the ''Princeton Alumni Weekly'' and the Princeton Press. The new press printed both local newspapers, university documents, ''The Daily Princetonian'', and later added book publishing ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Borel Conjecture
In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). Precise formulation of the conjecture Let M and N be closed and aspherical topological manifolds, and let :f \colon M \to N be a homotopy equivalence. The Borel conjecture states that the map f is homotopic to a homeomorphism. Since aspherical manifolds with isomorphic fundamental groups are homotopy equivalent, the Borel conjecture implies that aspherical closed manifolds are determined, up to homeomorphism, by their fundamental groups. This conjecture is false if topological manifolds and homeomorphisms are replaced by smooth manifolds and diffeomorphisms; counterexamples can be constructed by t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


L-theory
In mathematics, algebraic ''L''-theory is the ''K''-theory of quadratic forms; the term was coined by C. T. C. Wall, with ''L'' being used as the letter after ''K''. Algebraic ''L''-theory, also known as "Hermitian ''K''-theory", is important in surgery theory. Definition One can define ''L''-groups for any ring with involution ''R'': the quadratic ''L''-groups L_*(R) (Wall) and the symmetric ''L''-groups L^*(R) (Mishchenko, Ranicki). Even dimension The even-dimensional ''L''-groups L_(R) are defined as the Witt groups of ε-quadratic forms over the ring ''R'' with \epsilon = (-1)^k. More precisely, ::L_(R) is the abelian group of equivalence classes psi/math> of non-degenerate ε-quadratic forms \psi \in Q_\epsilon(F) over R, where the underlying R-modules F are finitely generated free. The equivalence relation is given by stabilization with respect to hyperbolic ε-quadratic forms: : psi= psi'\Longleftrightarrow n, n' \in _0: \psi \oplus H_(R)^n \cong \psi' \oplus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Assembly Map
In mathematics, assembly maps are an important concept in geometric topology. From the homotopy-theoretical viewpoint, an assembly map is a universal approximation of a homotopy invariant functor by a homology theory from the left. From the geometric viewpoint, assembly maps correspond to 'assemble' local data over a parameter space together to get global data. Assembly maps for algebraic K-theory and L-theory play a central role in the topology of high-dimensional manifolds, since their homotopy fibers have a direct geometric Homotopy-theoretical viewpoint It is a classical result that for any generalized homology theory h_* on the category of topological spaces (assumed to be homotopy equivalent to CW-complexes), there is a spectrum E such that :h_*(X)\cong \pi_*(X_+\wedge E), where X_+:=X\sqcup \{*\}. The functor X\mapsto X_+ \wedge E from spaces to spectra has the following properties: * It is homotopy-invariant (preserves homotopy equivalences). This reflects the fact ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hirzebruch Polynomial
In mathematics, a genus of a multiplicative sequence is a ring homomorphism from the ring of smooth compact manifolds up to the equivalence of bounding a smooth manifold with boundary (i.e., up to suitable cobordism) to another ring, usually the rational numbers, having the property that they are constructed from a sequence of polynomials in characteristic classes that arise as coefficients in formal power series with good multiplicative properties. Definition A genus \varphi assigns a number \Phi(X) to each manifold ''X'' such that # \Phi(X \sqcup Y) = \Phi(X) + \Phi(Y) (where \sqcup is the disjoint union); # \Phi(X \times Y) = \Phi(X)\Phi(Y); # \Phi(X) = 0 if ''X'' is the boundary of a manifold with boundary. The manifolds and manifolds with boundary may be required to have additional structure; for example, they might be oriented, spin, stably complex, and so on (see list of cobordism theories for many more examples). The value \Phi(X) is in some ring, often the ring of rat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]