Nonlinear Acoustics
   HOME
*



picture info

Nonlinear Acoustics
Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics (for sound waves in liquids and gases) and elasticity (for sound waves in solids). These equations are generally nonlinear, and their traditional linearization is no longer possible. The solutions of these equations show that, due to the effects of nonlinearity, sound waves are being distorted as they travel. Introduction A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase. This affects the wave's frequency structure; for example, in an initially plain sinusoidal wave of a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonlinear US Wave Propagation
In mathematics and science, a nonlinear system is a system in which the change of the output is not proportionality (mathematics), proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists because most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems. Typically, the behavior of a nonlinear system is described in mathematics by a nonlinear system of equations, which is a set of simultaneous equations in which the unknowns (or the unknown functions in the case of differential equations) appear as variables of a polynomial of degree higher than one or in the argument of a function (mathematics), function which is not a polynomial of degree one. In other words, in a nonlinear system of equations, the equation(s) to be solve ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Taylor Series
In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series, when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century. The partial sum formed by the first terms of a Taylor series is a polynomial of degree that is called the th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally better as increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Medical Ultrasonography
Medical ultrasound includes diagnostic techniques (mainly medical imaging, imaging techniques) using ultrasound, as well as therapeutic ultrasound, therapeutic applications of ultrasound. In diagnosis, it is used to create an image of internal body structures such as tendons, muscles, joints, blood vessels, and internal organs, to measure some characteristics (e.g. distances and velocities) or to generate an informative audible sound. Its aim is usually to find a source of disease or to exclude pathology. The usage of ultrasound to produce visual images for medicine is called medical ultrasonography or simply sonography. The practice of examining pregnant women using ultrasound is called obstetric ultrasonography, and was an early development of clinical ultrasonography. Ultrasound is composed of sound waves with frequency, frequencies which are significantly higher than the range of human hearing (>20,000 Hz). Ultrasonic images, also known as sonograms, are created by se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ultrasound
Ultrasound is sound waves with frequency, frequencies higher than the upper audible limit of human hearing range, hearing. Ultrasound is not different from "normal" (audible) sound in its physical properties, except that humans cannot hear it. This limit varies from person to person and is approximately 20 Hertz, kilohertz (20,000 hertz) in healthy young adults. Ultrasound devices operate with frequencies from 20 kHz up to several gigahertz. Ultrasound is used in many different fields. Ultrasonic devices are used to detect objects and measure distances. Ultrasound imaging or sonography is often used in medicine. In the nondestructive testing of products and structures, ultrasound is used to detect invisible flaws. Industrially, ultrasound is used for cleaning, mixing, and accelerating chemical processes. Animals such as bats and porpoises use ultrasound for locating Predation, prey and obstacles. History Acoustics, the science of sound, starts as far back as Pyth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, troughs, or zero crossings, and is a characteristic of both traveling waves and standing waves, as well as other spatial wave patterns. The inverse of the wavelength is called the spatial frequency. Wavelength is commonly designated by the Greek letter ''lambda'' (λ). The term ''wavelength'' is also sometimes applied to modulated waves, and to the sinusoidal envelopes of modulated waves or waves formed by interference of several sinusoids. Assuming a sinusoidal wave moving at a fixed wave speed, wavelength is inversely proportional to frequency of the wave: waves with higher frequencies have shorter wavelengths, and lower frequencies have longer wavelengths. Wavelength depends on the medium (for example, vacuum, air, or water) that a wav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude. Definitions Peak amplitude & semi-amplitude For symmetric periodic waves, like sine waves, square waves or triangle waves ''peak amplitude'' and ''semi amplitude'' are the same. Peak amplitude In audio system measurements, telecommunications and others where the measurand is a signal that swings above and below a reference value but is not sinusoidal, peak amplitude is often used. If the reference is zero, this is the maximum absolute value of the signal; if the reference is a mean value (DC component), the peak amplitude is the maximu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acoustic Levitation
Acoustic levitation is a method for suspending matter in air against gravity using acoustic radiation pressure from high intensity sound waves. It works on the same principles as acoustic tweezers by harnessing acoustic radiation forces. However acoustic tweezers are generally small scale devices which operate in a fluid medium and are less affected by gravity, whereas acoustic levitation is primarily concerned with overcoming gravity. Technically dynamic acoustic levitation is a form of acoustophoresis, though this term is more commonly associated with small scale acoustic tweezers. Typically sound waves at ultrasonic frequencies are used thus creating no sound audible to humans. This is primarily due to the high intensity of sound required to counteract gravity. However, there have been cases of audible frequencies being used. There are various techniques for generating the sound, but the most common is the use of piezoelectric transducers which can efficiently generate high amp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Sonic Boom
A sonic boom is a sound associated with shock waves created when an object travels through the air faster than the speed of sound. Sonic booms generate enormous amounts of sound energy, sounding similar to an explosion or a thunderclap to the human ear. A decibel is the primary unit measurement of sound. "A thunderclap is incredibly loud, producing levels between 100 and 120 dBA (Decibel, decibels A)- the equivalent of standing near a jet during take-off." The crack of a supersonic bullet passing overhead or the crack of a bullwhip are examples of a sonic boom in miniature. Sonic booms due to large supersonic aircraft can be particularly loud and startling, tend to awaken people, and may cause minor damage to some structures. This led to prohibition of routine supersonic flight overland. Although they cannot be completely prevented, research suggests that with careful shaping of the vehicle, the nuisance due to the sonic booms may be reduced to the point that overland super ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Finite Difference
A finite difference is a mathematical expression of the form . If a finite difference is divided by , one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems. The difference operator, commonly denoted \Delta is the operator that maps a function to the function \Delta /math> defined by :\Delta x)= f(x+1)-f(x). A difference equation is a functional equation that involves the finite difference operator in the same way as a differential equation involves derivatives. There are many similarities between difference equations and differential equations, specially in the solving methods. Certain recurrence relations can be written as difference equations by replacing iteration notation with finite differences. In numerical analysis, finite differences are widely used for approximating derivatives, and the term " ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




HAL (open Archive)
HAL (short for ''Hyper Articles en Ligne'') is an open archive where authors can deposit scholarly documents from all academic fields. It has a very good position in the international web repository ranking. History HAL was started in 2001 by Franck Laloë, then at Ecole Normal Superieure, and is run by the ''Centre pour la communication scientifique directe'', a French computing centre, which is part of the French National Centre for Scientific Research, CNRS. Other French institutions, such as INRIA, have joined the system. While it is primarily directed towards French academics, participation is not restricted to them. Public use Documents in HAL are uploaded either by one of the authors with the consent of the others or by an authorized person on their behalf. Since 2017 it's also possible to use Dissem.in, a tool for easy and semi-automated deposit. HAL is a tool for direct scientific communication between academics. A text posted to HAL is normally comparable to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Evgenia Zabolotskaya
Evgenia Andreevna Zabolotskaya (1935–2020) was a Russian-American physicist known for her contributions to nonlinear acoustics. the Khokhlov–Zabolotskaya equation and Khokhlov–Zabolotskaya–Kuznetsov equation in nonlinear acoustics are named in part for her. Education and career Zabolotskaya studied physics at Moscow State University, completing her PhD there in 1968 under the supervision of Rem Khokhlov. After working at the Andreyev Acoustics Institute, she returned to Moscow State University in 1971, appointed to the biology department. In 1982 she moved again, to the of the Russian Academy of Sciences. After meeting and beginning to work with University of Texas at Austin mechanical engineering professors David Blackstock and Mark Hamilton, starting in 1982, Zabolotskaya moved to the University of Texas in 1991. From 1997 to 2000 she was on leave from the university to work at a start-up company in Virginia. She retired in 2015. She died on June 2, 2020 in Santa Fe, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rem Khokhlov
Rem Viktorovich Khokhlov (russian: link=no, Рем Викторович Хохлов; July 15, 1926, in Livny – August 8, 1977, in Moscow) was a Soviet physicist and university teacher, rector of Lomonosov Moscow State University, one of the founders of nonlinear optics. Biography Khokhlov was born in the family of political officer and graduate of the Moscow Energetic Institute Viktor Khristoforovich Khokhlov and physicist Maria Yakovlevna. He graduated from a seven-year school in 1941 and worked in a car workshop during the Great Patriotic War. In 1944, he externally passed exams in high school and began to study at the Moscow Aviation Institute. In 1945, he moved to the Physics department at Moscow State University, where he spent his whole life. After graduating from university in 1948, he entered graduate school at the Department of Oscillation Physics. In 1952 he defended his thesis with the title of candidate of physical and mathematical sciences(PhD). With his investiga ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]