Nonagonal Number
   HOME
*





Nonagonal Number
A nonagonal number (or an enneagonal number) is a figurate number that extends the concept of triangular and square numbers to the nonagon (a nine-sided polygon). However, unlike the triangular and square numbers, the patterns involved in the construction of nonagonal numbers are not rotationally symmetrical. Specifically, the ''n''th nonagonal number counts the number of dots in a pattern of ''n'' nested nonagons, all sharing a common corner, where the ''i''th nonagon in the pattern has sides made of ''i'' dots spaced one unit apart from each other. The nonagonal number for ''n'' is given by the formula: :\frac . Nonagonal numbers The first few nonagonal numbers are: : 0, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, 474, 559, 651, 750, 856, 969, 1089, 1216, 1350, 1491, 1639, 1794, 1956, 2125, 2301, 2484, 2674, 2871, 3075, 3286, 3504, 3729, 3961, 4200, 4446, 4699, 4959, 5226, 5500, 5781, 6069, 6364, 6666, 6975, 7291, 7614, 7944, 8281, 8625, 8976, 9334, 9699. The pari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Figurate Number
The term figurate number is used by different writers for members of different sets of numbers, generalizing from triangular numbers to different shapes (polygonal numbers) and different dimensions (polyhedral numbers). The term can mean * polygonal number * a number represented as a discrete -dimensional regular geometric pattern of -dimensional balls such as a polygonal number (for ) or a polyhedral number (for ). * a member of the subset of the sets above containing only triangular numbers, pyramidal numbers, and their analogs in other dimensions. Terminology Some kinds of figurate number were discussed in the 16th and 17th centuries under the name "figural number". In historical works about Greek mathematics the preferred term used to be ''figured number''. In a use going back to Jacob Bernoulli's Ars Conjectandi, the term ''figurate number'' is used for triangular numbers made up of successive integers, tetrahedral numbers made up of successive triangular numbers, etc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangular Number
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in the triangular arrangement with dots on each side, and is equal to the sum of the natural numbers from 1 to . The sequence of triangular numbers, starting with the 0th triangular number, is (This sequence is included in the On-Line Encyclopedia of Integer Sequences .) Formula The triangular numbers are given by the following explicit formulas: T_n= \sum_^n k = 1+2+3+ \dotsb +n = \frac = , where \textstyle is a binomial coefficient. It represents the number of distinct pairs that can be selected from objects, and it is read aloud as " plus one choose two". The first equation can be illustrated using a visual proof. For every triangular number T_n, imagine a "half-square" arrangement of objects corresponding to the triangular n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Square Number
In mathematics, a square number or perfect square is an integer that is the square of an integer; in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals and can be written as . The usual notation for the square of a number is not the product , but the equivalent exponentiation , usually pronounced as " squared". The name ''square'' number comes from the name of the shape. The unit of area is defined as the area of a unit square (). Hence, a square with side length has area . If a square number is represented by ''n'' points, the points can be arranged in rows as a square each side of which has the same number of points as the square root of ''n''; thus, square numbers are a type of figurate numbers (other examples being cube numbers and triangular numbers). Square numbers are non-negative. A non-negative integer is a square number when its square root is again an integer. For example, \sqrt = 3, so 9 is a squ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Nonagon
In geometry, a nonagon () or enneagon () is a nine-sided polygon or 9-gon. The name ''nonagon'' is a prefix hybrid formation, from Latin (''nonus'', "ninth" + ''gonon''), used equivalently, attested already in the 16th century in French ''nonogone'' and in English from the 17th century. The name ''enneagon'' comes from Greek ''enneagonon'' (εννεα, "nine" + γωνον (from γωνία = "corner")), and is arguably more correct, though less common than "nonagon". Regular nonagon A ''regular nonagon'' is represented by Schläfli symbol and has internal angles of 140°. The area of a regular nonagon of side length ''a'' is given by :A = \fraca^2\cot\frac=(9/2)ar = 9r^2\tan(\pi/9) :::= (9/2)R^2\sin(2\pi/9)\simeq6.18182\,a^2, where the radius ''r'' of the inscribed circle of the regular nonagon is :r=(a/2)\cot(\pi/9) and where ''R'' is the radius of its circumscribed circle: :R = \sqrt=r\sec(\pi/9). Construction Although a regular nonagon is not constructible with compa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

0 (number)
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures. Common names for the number 0 in English are ''zero'', ''nought'', ''naught'' (), ''nil''. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as ''oh'' or ''o'' (). Informal or slang terms for 0 include ''zilch'' and ''zip''. Historically, ''ought'', ''aught'' (), and ''cipher'', have also been used. Etymology The word ''zero'' came into the English language via French from the Italian , a contraction of the Venetian form of Italian via ''ṣafira'' or ''ṣifr''. In pre-Islamic time the word (Arabic ) had the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

1 (number)
1 (one, unit, unity) is a number representing a single or the only entity. 1 is also a numerical digit and represents a single unit of counting or measurement. For example, a line segment of ''unit length'' is a line segment of length 1. In conventions of sign where zero is considered neither positive nor negative, 1 is the first and smallest positive integer. It is also sometimes considered the first of the infinite sequence of natural numbers, followed by  2, although by other definitions 1 is the second natural number, following  0. The fundamental mathematical property of 1 is to be a multiplicative identity, meaning that any number multiplied by 1 equals the same number. Most if not all properties of 1 can be deduced from this. In advanced mathematics, a multiplicative identity is often denoted 1, even if it is not a number. 1 is by convention not considered a prime number; this was not universally accepted until the mid-20th century. Additionally, 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

9 (number)
9 (nine) is the natural number following and preceding . Evolution of the Arabic digit In the beginning, various Indians wrote a digit 9 similar in shape to the modern closing question mark without the bottom dot. The Kshatrapa, Andhra and Gupta started curving the bottom vertical line coming up with a -look-alike. The Nagari continued the bottom stroke to make a circle and enclose the 3-look-alike, in much the same way that the sign @ encircles a lowercase ''a''. As time went on, the enclosing circle became bigger and its line continued beyond the circle downwards, as the 3-look-alike became smaller. Soon, all that was left of the 3-look-alike was a squiggle. The Arabs simply connected that squiggle to the downward stroke at the middle and subsequent European change was purely cosmetic. While the shape of the glyph for the digit 9 has an ascender in most modern typefaces, in typefaces with text figures the character usually has a descender, as, for example, in . The mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


24 (number)
24 (twenty-four) is the natural number following 23 and preceding 25. The SI prefix for 1024 is yotta (Y), and for 10−24 (i.e., the reciprocal of 1024) yocto (y). These numbers are the largest and smallest number to receive an SI prefix to date. In mathematics 24 is an even composite number, with 2 and 3 as its distinct prime factors. It is the first number of the form 2''q'', where ''q'' is an odd prime. It is the smallest number with exactly eight positive divisors: 1, 2, 3, 4, 6, 8, 12, and 24; thus, it is a highly composite number, having more divisors than any smaller number. Furthermore, it is an abundant number, since the sum of its proper divisors ( 36) is greater than itself, as well as a superabundant number. In number theory and algebra *24 is the smallest 5-hemiperfect number, as it has a half-integer abundancy index: *:1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 = 60 =  × 24 *24 is a semiperfect number, since adding up all the proper diviso ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

46 (number)
46 (forty-six) is the natural number following 45 and preceding 47. In mathematics Forty-six is * a Wedderburn-Etherington number, * an enneagonal number * a centered triangular number. * the number of parallelogram polyominoes with 6 cells. It is the sum of the totient function for the first twelve integers. 46 is the largest even integer that cannot be expressed as a sum of two abundant numbers. It is also the sixteenth semiprime. Since it is possible to find sequences of 46+1 consecutive integers such that each inner member shares a factor with either the first or the last member, 46 is an Erdős–Woods number. In science * The atomic number of palladium. * The number of human chromosomes. * The approximate molar mass of ethanol (46.07 g mol) Astronomy * Messier object M46, a magnitude 6.5 open cluster in the constellation Puppis. * The New General Cataloguebr>object NGC 46, a star in the constellation Pisces. In music * Japanese idol group fran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


75 (number)
75 (seventy-five) is the natural number following 74 (number), 74 and preceding 76 (number), 76. __TOC__ In mathematics 75 is a self number because there is no integer that added up to its own digits adds up to 75. It is the sum of the first five pentagonal numbers, and therefore a pentagonal pyramidal number, as well as a nonagonal number. It is also the fourth ordered Bell number, and a Keith number, because it recurs in a Fibonacci-like sequence started from its base 10 digits: 7 (number), 7, 5 (number), 5, 12 (number), 12, 17 (number), 17, 29 (number), 29, 46 (number), 46, 75... 75 is the count of the number of weak orderings on a set of four items. Excluding the infinite sets, there are 75 uniform polyhedra in the third dimension, which incorporate Star polyhedron, star polyhedra as well. Inclusive of 7 families of Prism (geometry), prisms and antiprism, antiprisms, there are also 75 uniform polyhedron compound, uniform compound polyhedra. In other fields Seventy-five is: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


111 (number)
111 (One hundred ndeleven) is the natural number following 110 and preceding 112. In mathematics 111 is a perfect totient number. 111 is R3 or the second repunit, a number like 11, 111, or 1111 that consists of repeated units, or 1's. It equals 3 × 37, therefore all triplets (numbers like 222 or 777) in base ten are of the form 3''n'' × 37. As a repunit, it also follows that 111 is a palindromic number. All triplets in all bases are multiples of 111 in that base, therefore the number represented by 111 in a particular base is the only triplet that can ever be prime. 111 is not prime in base ten, but is prime in base two, where 1112 = 710. It is also prime in these other bases up to 128: 3, 5, 6, 8, 12, 14, 15, 17, 20, 21, 24, 27, 33, 38, 41, 50, 54, 57, 59, 62, 66, 69, 71, 75, 77, 78, 80, 89, 90, 99, 101, 105, 110, 111, 117, 119 In base 18, the number 111 is 73 (= 34310) which is the only base where 111 is a perfect power. The smallest magic square using only 1 and p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




154 (number)
154 (one hundred ndfifty-four) is the natural number following 153 and preceding 155. In mathematics 154 is a nonagonal number. Its factorization makes 154 a sphenic number There is no integer with exactly 154 coprimes below it, making 154 a noncototient, nor is there, in base 10, any integer that added up to its own digits yields 154, making 154 a self number 154 is the sum of the first six factorials, if one starts with 0! and assumes that 0!=1. With just 17 cuts, a pancake can be cut up into 154 pieces ( Lazy caterer's sequence). The distinct prime factors of 154 add up to 20, and so do the ones of 153, hence the two form a Ruth-Aaron pair. 154! + 1 is a factorial prime. In music * 154 is an album by Wire, named for the number of live gigs Wire had performed at that time In the military * was a United States Navy ''Trefoil''-class concrete barge during World War II * was a United States Navy ''Admirable''-class minesweeper during World War II * was a United States ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]