Non-smooth Mechanics
   HOME
*





Non-smooth Mechanics
{{Short description, Modeling approach in mechanics Non-smooth mechanics is a modeling approach in mechanics which does not require the time evolutions of the positions and of the velocities to be smooth function In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if ...s anymore. Due to possible impacts, the velocities of the mechanical system are even allowed to undergo jumps at certain time instants in order to fulfill the kinematical restrictions. Consider for example a rigid model of a ball which falls on the ground. Just before the impact between ball and ground, the ball has non-vanishing pre-impact velocity. At the impact time instant, the velocity must jump to a post-impact velocity which is at least zero, or else penetration would occur. Non-smooth mechanical models are often used i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mechanics
Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements, or changes of an object's position relative to its environment. Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, Huygens, and Newton laid the foundation for what is now known as classical mechanics. As a branch of classical physics, mechanics deals with bodies that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as the physical science that deals with the motion of and forces on bodies not in the quantum r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Smooth Function
In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives it has over some domain, called ''differentiability class''. At the very minimum, a function could be considered smooth if it is differentiable everywhere (hence continuous). At the other end, it might also possess derivatives of all orders in its domain, in which case it is said to be infinitely differentiable and referred to as a C-infinity function (or C^ function). Differentiability classes Differentiability class is a classification of functions according to the properties of their derivatives. It is a measure of the highest order of derivative that exists and is continuous for a function. Consider an open set U on the real line and a function f defined on U with real values. Let ''k'' be a non-negative integer. The function f is said to be of differentiability class ''C^k'' if the derivatives f',f'',\dots,f^ exist and are continuous on U. If f is k-dif ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contact Dynamics
Contact dynamics deals with the motion of multibody systems subjected to unilateral contacts and friction. Such systems are omnipresent in many multibody dynamics applications. Consider for example * Contacts between wheels and ground in vehicle dynamics * Squealing of brakes due to friction induced oscillations * Motion of many particles, spheres which fall in a funnel, mixing processes (granular media) * Clockworks * Walking machines * Arbitrary machines with limit stops, friction. *Anatomic tissues (skin, iris/lens, eyelids/anterior ocular surface, joint cartilages, vascular endothelium/blood cells, muscles/tendons, et cetera) In the following it is discussed how such mechanical systems with unilateral contacts and friction can be modeled and how the time evolution of such systems can be obtained by numerical integration. In addition, some examples are given. Modeling The two main approaches for modeling mechanical systems with unilateral contacts and friction are the regulari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contact Dynamics
Contact dynamics deals with the motion of multibody systems subjected to unilateral contacts and friction. Such systems are omnipresent in many multibody dynamics applications. Consider for example * Contacts between wheels and ground in vehicle dynamics * Squealing of brakes due to friction induced oscillations * Motion of many particles, spheres which fall in a funnel, mixing processes (granular media) * Clockworks * Walking machines * Arbitrary machines with limit stops, friction. *Anatomic tissues (skin, iris/lens, eyelids/anterior ocular surface, joint cartilages, vascular endothelium/blood cells, muscles/tendons, et cetera) In the following it is discussed how such mechanical systems with unilateral contacts and friction can be modeled and how the time evolution of such systems can be obtained by numerical integration. In addition, some examples are given. Modeling The two main approaches for modeling mechanical systems with unilateral contacts and friction are the regulari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Unilateral Contact
In contact mechanics, the term unilateral contact, also called unilateral constraint, denotes a mechanical constraint which prevents penetration between two rigid/flexible bodies. Constraints of this kind are omnipresent in non-smooth multibody dynamics applications, such as granular flows, legged robot, vehicle dynamics, particle damping, imperfect joints, or rocket landings. In these applications, the unilateral constraints result in impacts happening, therefore requiring suitable methods to deal with such constraints. Modelling of the unilateral constraints There are mainly two kinds of methods to model the unilateral constraints. The first kind is based on smooth contact dynamics, including methods using Hertz's models, penalty methods, and some regularization force models, while the second kind is based on the non-smooth contact dynamics, which models the system with unilateral contacts as variational inequalities. Smooth contact dynamics In this method, normal forc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jean Jacques Moreau
Jean Jacques Moreau (31 July 1923 – 9 January 2014) was a French mathematician and mechanician. He normally published under the name J. J. Moreau. Moreau was born in Blaye. He received his doctorate in mathematics from the University of Paris, then became a researcher at the Centre National de la Recherche Scientifique. He was appointed Professor of Mathematical Models in Physics at Poitiers University and later Professor of General Mechanics at University of Montpellier II. He was emeritus professor in the Laboratoire de Mécanique et Génie Civil, a joint research unit of the university and the CNRS. Moreau's principal works have been in non-smooth mechanics and convex analysis. He is considered one of the founders of convex analysis, where several fundamental and now classical results have his name (Moreau's lemma of the two cones, Moreau's envelopes, Moreau-Yosida's approximations, Fenchel-Moreau's theorem, etc.). He founded the Convex Analysis Group in the 1970s at Mon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mechanics
Mechanics (from Ancient Greek: μηχανική, ''mēkhanikḗ'', "of machines") is the area of mathematics and physics concerned with the relationships between force, matter, and motion among physical objects. Forces applied to objects result in displacements, or changes of an object's position relative to its environment. Theoretical expositions of this branch of physics has its origins in Ancient Greece, for instance, in the writings of Aristotle and Archimedes (see History of classical mechanics and Timeline of classical mechanics). During the early modern period, scientists such as Galileo, Kepler, Huygens, and Newton laid the foundation for what is now known as classical mechanics. As a branch of classical physics, mechanics deals with bodies that are either at rest or are moving with velocities significantly less than the speed of light. It can also be defined as the physical science that deals with the motion of and forces on bodies not in the quantum r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]