Noise-equivalent Temperature
   HOME
*





Noise-equivalent Temperature
Noise-equivalent temperature (NET) is a measure of the sensitivity of a detector of thermal radiation in the infrared, terahertz or microwave portions of the electromagnetic spectrum. It is the amount of incident signal temperature that would be needed to match the internal noise of the detector such that the signal-to-noise ratio is equal to one. Often the spectrum of the NET is reported as a temperature ''per root bandwidth''. A detector that measures power is often interested in the analogous noise-equivalent power (NEP). If a relation between intensity and temperature is well defined over the passband, as in the case of a blackbody, then the NET simply scales with the NEP. If a detector is limited by either shot noise or Johnson noise then the NET can be decreased by using an increased integration time. The NET of flicker noise limited detectors can not be reduced by increased integration time. Typically uncooled bolometric detectors have NET figures of 30-200 mK. Coole ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700  nanometers (430  THz). Longer IR wavelengths (30 μm-100 μm) are sometimes included as part of the terahertz radiation range. Almost all black-body radiation from objects near room temperature is at infrared wavelengths. As a form of electromagnetic radiation, IR propagates energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon. It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bolometer
A bolometer is a device for measuring radiant heat by means of a material having a temperature-dependent electrical resistance. It was invented in 1878 by the American astronomer Samuel Pierpont Langley. Principle of operation A bolometer consists of an absorptive element, such as a thin layer of metal, connected to a thermal reservoir (a body of constant temperature) through a thermal link. The result is that any radiation impinging on the absorptive element raises its temperature above that of the reservoir – the greater the absorbed power, the higher the temperature. The intrinsic thermal time constant, which sets the speed of the detector, is equal to the ratio of the heat capacity of the absorptive element to the thermal conductance between the absorptive element and the reservoir. The temperature change can be measured directly with an attached resistive thermometer, or the resistance of the absorptive element itself can be used as a thermometer. Metal bolometers us ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Minimum Resolvable Temperature Difference
Minimum resolvable temperature difference (MRTD) is a measure for assessing the performance of infrared cameras, and is inversely proportional to the modulation transfer function. Typically, an operator is asked to assess the minimum temperature difference at which a 4-bar target can be resolved. This minimum difference will change with the spatial frequency of the bar target used. A curve of MRTD against spatial frequency is obtained which characterises the performance of the imaging system. Modern infrared imaging systems can have low spatial frequency MRTDs of tens of millikelvins. Manual test A manual subjective test is implemented to determine the MRTD. An operator uses a series of 4-bar targets of different spatial frequencies. For each target he/she adjusts the blackbody, (source of Infrared radiation), temperature up and down until the pattern is "just resolvable." The positive and negative temperature differences are stored into a two dimensional array. The correspon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Specific Detectivity
Specific detectivity, or ''D*'', for a photodetector is a figure of merit used to characterize performance, equal to the reciprocal of noise-equivalent power (NEP), normalized per square root of the sensor's area and frequency bandwidth (reciprocal of twice the integration time). Specific detectivity is given by D^*=\frac, where A is the area of the photosensitive region of the detector, \Delta f is the bandwidth, and NEP the noise equivalent power in units It is commonly expressed in ''Jones'' units (cm \cdot \sqrt/ W) in honor of Robert Clark Jones who originally defined it.R. C. Jones, "Proposal of the detectivity D** for detectors limited by radiation noise," ''J. Opt. Soc. Am.'' 50, 1058 (1960), ) Given that noise-equivalent power can be expressed as a function of the responsivity \mathfrak (in units of A/W or V/W) and the noise spectral density S_n (in units of A/Hz^ or V/Hz^) as NEP=\frac, it is common to see the specific detectivity expressed as D^*=\frac. It is often u ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Noise-equivalent Power
Noise-equivalent power (NEP) is a measure of the sensitivity of a photodetector or detector system. It is defined as the signal power that gives a signal-to-noise ratio of one in a one hertz output bandwidth. An output bandwidth of one hertz is equivalent to half a second of integration time.The factor of one half is explained by the Nyquist–Shannon sampling theorem. The units of NEP are watts per square root hertz. The NEP is equal to the noise spectral density (expressed in units of \mathrm/\sqrt or \mathrm/\sqrt) divided by the responsivity (expressed in units of \mathrm/\mathrm or \mathrm/\mathrm, respectively). The fundamental equation is SNR = P/NEP. A smaller NEP corresponds to a more sensitive detector. For example, a detector with an NEP of 10^ \mathrm/\sqrt can detect a signal power of one picowatt with a signal-to-noise ratio (SNR) of one after one half second of averaging. The SNR improves as the square root of the averaging time, and hence the SNR in this example can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Indium Antimonide
Indium antimonide (InSb) is a crystalline compound made from the elements indium (In) and antimony (Sb). It is a narrow- gap semiconductor material from the III- V group used in infrared detectors, including thermal imaging cameras, FLIR systems, infrared homing missile guidance systems, and in infrared astronomy. The indium antimonide detectors are sensitive between 1–5 μm wavelengths. Indium antimonide was a very common detector in the old, single-detector mechanically scanned thermal imaging systems. Another application is as a terahertz radiation source as it is a strong photo-Dember emitter. History The intermetallic compound was first reported by Liu and Peretti in 1951, who gave its homogeneity range, structure type, and lattice constant. Polycrystalline ingots of InSb were prepared by Heinrich Welker in 1952, although they were not very pure by today's semiconductor standards. Welker was interested in systematically studying the semiconducting properties of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

MWIR
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700 nanometers (430 Terahertz (unit), THz). Longer IR wavelengths (30 μm-100 μm) are sometimes included as part of the terahertz radiation range. Almost all black-body radiation from objects near room temperature is at infrared wavelengths. As a form of electromagnetic radiation, IR propagates energy and momentum, exerts radiation pressure, and has properties corresponding to Wave–particle duality, both those of a wave and of a Subatomic particle, particle, the photon. It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed rad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LWIR
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700 nanometers (430  THz). Longer IR wavelengths (30 μm-100 μm) are sometimes included as part of the terahertz radiation range. Almost all black-body radiation from objects near room temperature is at infrared wavelengths. As a form of electromagnetic radiation, IR propagates energy and momentum, exerts radiation pressure, and has properties corresponding to both those of a wave and of a particle, the photon. It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed radiant heat. In 1800 the astronomer Sir William Herschel discovered th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


HgCdTe
Hg1−xCdxTe or mercury cadmium telluride (also cadmium mercury telluride, MCT, MerCad Telluride, MerCadTel, MerCaT or CMT) is a chemical compound of cadmium telluride (CdTe) and mercury telluride (HgTe) with a tunable bandgap spanning the shortwave infrared to the very long wave infrared regions. The amount of cadmium (Cd) in the alloy can be chosen so as to tune the optical absorption of the material to the desired infrared wavelength. CdTe is a semiconductor with a bandgap of approximately 1.5 electronvolts (eV) at room temperature. HgTe is a semimetal, which means that its bandgap energy is zero. Mixing these two substances allows one to obtain any bandgap between 0 and 1.5 eV. Properties Physical Hg1−xCdxTe has a zincblende structure with two interpenetrating face-centered cubic lattices offset by (1/4,1/4,1/4)ao in the primitive cell. The cations Cd and Hg are statistically mixed on the yellow sublattice while the Te anions form the grey sublattice in the image ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and physicist William Thomson, 1st Baron Kelvin (1824–1907). The Kelvin scale is an absolute thermodynamic temperature scale, meaning it uses absolute zero as its null (zero) point. Historically, the Kelvin scale was developed by shifting the starting point of the much-older Celsius scale down from the melting point of water to absolute zero, and its increments still closely approximate the historic definition of a degree Celsius, but since 2019 the scale has been defined by fixing the Boltzmann constant to be exactly . Hence, one kelvin is equal to a change in the thermodynamic temperature that results in a change of thermal energy by . The temperature in degree Celsius is now defined as the temperature in kelvins minus 273.15, meaning t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Flicker Noise
Flicker noise is a type of electronic noise with a 1/''f'' power spectral density. It is therefore often referred to as 1/''f'' noise or pink noise, though these terms have wider definitions. It occurs in almost all electronic devices and can show up with a variety of other effects, such as impurities in a conductive channel, generation and recombination noise in a transistor due to base current, and so on. Properties 1/''f'' noise in current or voltage is usually related to a direct current, as resistance fluctuations are transformed to voltage or current fluctuations by Ohm's law. There is also a 1/''f'' component in resistors with no direct current through them, likely due to temperature fluctuations modulating the resistance. This effect is not present in manganin, as it has negligible temperature coefficient of resistance. In electronic devices, it shows up as a low-frequency phenomenon, as the higher frequencies are overshadowed by white noise from other sources. In ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terahertz Radiation
Terahertz radiation – also known as submillimeter radiation, terahertz waves, tremendously high frequency (THF), T-rays, T-waves, T-light, T-lux or THz – consists of electromagnetic waves within the ITU-designated band of frequencies from 0.3 to 3  terahertz (THz), although the upper boundary is somewhat arbitrary and is considered by some sources as 30 THz. One terahertz is 1012  Hz or 1000 GHz. Wavelengths of radiation in the terahertz band correspondingly range from 1 mm to 0.1 mm = 100 µm. Because terahertz radiation begins at a wavelength of around 1 millimeter and proceeds into shorter wavelengths, it is sometimes known as the ''submillimeter band'', and its radiation as ''submillimeter waves'', especially in astronomy. This band of electromagnetic radiation lies within the transition region between microwave and far infrared, and can be regarded as either. Terahertz radiation is strongly absorbed by the gases o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]