Neil Robertson (mathematician)
   HOME
*





Neil Robertson (mathematician)
George Neil Robertson (born November 30, 1938) is a mathematician working mainly in topological graph theory, currently a distinguished professor emeritus at the Ohio State University. Education Robertson earned his B.Sc. from Brandon College in 1959, and his Ph.D. in 1969 at the University of Waterloo under his doctoral advisor William Tutte. Biography In 1969, Robertson joined the faculty of the Ohio State University, where he was promoted to Associate Professor in 1972 and Professor in 1984. He was a consultant with Bell Communications Research from 1984 to 1996. He has held visiting faculty positions in many institutions, most extensively at Princeton University from 1996 to 2001, and at Victoria University of Wellington, New Zealand, in 2002. He also holds an adjunct position at King Abdulaziz University in Saudi Arabia.. Research Robertson is known for his work in graph theory, and particularly for a long series of papers co-authored with Paul Seymour and published over ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ohio State University
The Ohio State University, commonly called Ohio State or OSU, is a public land-grant research university in Columbus, Ohio. A member of the University System of Ohio, it has been ranked by major institutional rankings among the best public universities in the United States. Founded in 1870 as the state's land-grant university and the ninth university in Ohio with the Morrill Act of 1862, Ohio State was originally known as the Ohio Agricultural and Mechanical College and focused on various agricultural and mechanical disciplines, but it developed into a comprehensive university under the direction of then-Governor and later U.S. president Rutherford B. Hayes, and in 1878, the Ohio General Assembly passed a law changing the name to "the Ohio State University" and broadening the scope of the university. Admission standards tightened and became greatly more selective throughout the 2000s and 2010s. Ohio State's political science department and faculty have greatly contri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Forbidden Minor
In graph theory, a branch of mathematics, many important families of graphs can be described by a finite set of individual graphs that do not belong to the family and further exclude all graphs from the family which contain any of these forbidden graphs as (induced) subgraph or minor. A prototypical example of this phenomenon is Kuratowski's theorem, which states that a graph is planar (can be drawn without crossings in the plane) if and only if it does not contain either of two forbidden graphs, the complete graph and the complete bipartite graph . For Kuratowski's theorem, the notion of containment is that of graph homeomorphism, in which a subdivision of one graph appears as a subgraph of the other. Thus, every graph either has a planar drawing (in which case it belongs to the family of planar graphs) or it has a subdivision of at least one of these two graphs as a subgraph (in which case it does not belong to the planar graphs). Definition More generally, a forbidden gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Perfect Graph
In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph (clique number). Equivalently stated in symbolic terms an arbitrary graph G=(V,E) is perfect if and only if for all S\subseteq V we have \chi(G =\omega(G . The perfect graphs include many important families of graphs and serve to unify results relating colorings and cliques in those families. For instance, in all perfect graphs, the graph coloring problem, maximum clique problem, and maximum independent set problem can all be solved in polynomial time. In addition, several important min-max theorems in combinatorics, such as Dilworth's theorem, can be expressed in terms of the perfection of certain associated graphs. A graph G is 1-perfect if and only if \chi(G)=\omega(G). Then, G is perfect if and only if every induced subgraph of G is 1-perfect. Properties * By the perfect graph theorem, a graph G is perfect if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maria Chudnovsky
Maria Chudnovsky (born January 6, 1977) is an Israeli-American mathematician working on graph theory and combinatorial optimization. She is a 2012 MacArthur Fellow. Education and career Chudnovsky is a professor in the department of mathematics at Princeton University. She grew up in Russia (attended Saint Petersburg Lyceum 30) and Israel, studying at the Technion, and received her Ph.D. in 2003 from Princeton University under the supervision of Paul Seymour. After postdoctoral research at the Clay Mathematics Institute,. she became an assistant professor at Princeton University in 2005, and moved to Columbia University in 2006. By 2014, she was the Liu Family Professor of Industrial Engineering and Operations Research at Columbia. She returned to Princeton as a professor of mathematics in 2015. Research Chudnovsky's contributions to graph theory include the proof of the strong perfect graph theorem (with Neil Robertson, Paul Seymour, and Robin Thomas) characterizing p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of rigorous instructions, typically used to solve a class of specific problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can perform automated deductions (referred to as automated reasoning) and use mathematical and logical tests to divert the code execution through various routes (referred to as automated decision-making). Using human characteristics as descriptors of machines in metaphorical ways was already practiced by Alan Turing with terms such as "memory", "search" and "stimulus". In contrast, a heuristic is an approach to problem solving that may not be fully specified or may not guarantee correct or optimal results, especially in problem domains where there is no well-defined correct or optimal result. As an effective method, an algorithm can be expressed within a finite amount of space ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Four Color Theorem
In mathematics, the four color theorem, or the four color map theorem, states that no more than four colors are required to color the regions of any map so that no two adjacent regions have the same color. ''Adjacent'' means that two regions share a common boundary curve segment, not merely a corner where three or more regions meet. It was the first major theorem to be proved using a computer. Initially, this proof was not accepted by all mathematicians because the computer-assisted proof was infeasible for a human to check by hand. The proof has gained wide acceptance since then, although some doubters remain. The four color theorem was proved in 1976 by Kenneth Appel and Wolfgang Haken after many false proofs and counterexamples (unlike the five color theorem, proved in the 1800s, which states that five colors are enough to color a map). To dispel any remaining doubts about the Appel–Haken proof, a simpler proof using the same ideas and still relying on computers was pu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Daniel P
Daniel is a masculine given name and a surname of Hebrew origin. It means "God is my judge"Hanks, Hardcastle and Hodges, ''Oxford Dictionary of First Names'', Oxford University Press, 2nd edition, , p. 68. (cf. Gabriel—"God is my strength"), and derives from two early biblical figures, primary among them Daniel from the Book of Daniel. It is a common given name for males, and is also used as a surname. It is also the basis for various derived given names and surnames. Background The name evolved into over 100 different spellings in countries around the world. Nicknames (Dan, Danny) are common in both English and Hebrew; "Dan" may also be a complete given name rather than a nickname. The name "Daniil" (Даниил) is common in Russia. Feminine versions ( Danielle, Danièle, Daniela, Daniella, Dani, Danitza) are prevalent as well. It has been particularly well-used in Ireland. The Dutch names "Daan" and "Daniël" are also variations of Daniel. A related surname develo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Graph Coloring
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color. Vertex coloring is often used to introduce graph coloring problems, since other coloring problems can be transformed into a vertex coloring instance. For example, an edge coloring of a graph is just a vertex coloring of its line graph, and a face coloring of a plane graph is just a vertex coloring of its dual. However, non-vertex coloring problems are often stated and studied as-is. This ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hadwiger Conjecture (graph Theory)
In graph theory, the Hadwiger conjecture states that if G is loopless and has no K_t minor then its chromatic number satisfies It is known to be true for The conjecture is a generalization of the four-color theorem and is considered to be one of the most important and challenging open problems in the field. In more detail, if all proper colorings of an undirected graph G use k or more colors, then one can find k disjoint connected subgraphs of G such that each subgraph is connected by an edge to each other subgraph. Contracting the edges within each of these subgraphs so that each subgraph collapses to a single vertex produces a complete graph K_k on k vertices as a minor This conjecture, a far-reaching generalization of the four-color problem, was made by Hugo Hadwiger in 1943 and is still unsolved. call it "one of the deepest unsolved problems in graph theory." Equivalent forms An equivalent form of the Hadwiger conjecture (the contrapositive of the form stated abo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Robin Thomas (mathematician)
Robin Thomas (August 22, 1962 – March 26, 2020) was a mathematician working in graph theory at the Georgia Institute of Technology. Thomas received his doctorate in 1985 from Charles University in Prague, Czechoslovakia (now the Czech Republic), under the supervision of Jaroslav Nešetřil. He joined the faculty at Georgia Tech in 1989, and became a Regents' Professor there, briefly serving as the department Chair. On March 26, 2020, he died of Amyotrophic Lateral Sclerosis at the age of 57 after 12 years of struggle with the illness. Awards Thomas was awarded the Fulkerson Prize for outstanding papers in discrete mathematics twice, in 1994 as co-author of a paper on the Hadwiger conjecture, and in 2009 for the proof of the strong perfect graph theorem. In 2011 he was awarded the Karel Janeček Foundation Neuron Prize for Lifetime Achievement in Mathematics. In 2012 he became a fellow of the American Mathematical Society. He was named a SIAM Fellow The SIAM Fellowship is an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Girth (graph Theory)
In graph theory, the girth of an undirected graph is the length of a shortest cycle contained in the graph. If the graph does not contain any cycles (that is, it is a forest), its girth is defined to be infinity. For example, a 4-cycle (square) has girth 4. A grid has girth 4 as well, and a triangular mesh has girth 3. A graph with girth four or more is triangle-free. Cages A cubic graph (all vertices have degree three) of girth that is as small as possible is known as a - cage (or as a -cage). The Petersen graph is the unique 5-cage (it is the smallest cubic graph of girth 5), the Heawood graph is the unique 6-cage, the McGee graph is the unique 7-cage and the Tutte eight cage is the unique 8-cage. There may exist multiple cages for a given girth. For instance there are three nonisomorphic 10-cages, each with 70 vertices: the Balaban 10-cage, the Harries graph and the Harries–Wong graph. Image:Petersen1 tiny.svg, The Petersen graph has a girth of 5 Image:Heawood_Gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]