Nyström Method
   HOME
*





Nyström Method
In mathematics numerical analysis, the Nyström method or quadrature method seeks the numerical solution of an integral equation by replacing the integral with a representative weighted sum. The continuous problem is broken into n discrete intervals; quadrature or numerical integration determines the weights and locations of representative points for the integral. The problem becomes a system of linear equations with n equations and n unknowns, and the underlying function is implicitly represented by an interpolation using the chosen quadrature rule. This discrete problem may be ill-conditioned, depending on the original problem and the chosen quadrature rule. Since the linear equations require O(n^3) operations to solve, high-order quadrature rules perform better because low-order quadrature rules require large n for a given accuracy. Gaussian quadrature is normally a good choice for smooth, non-singular problems. Discretization of the integral Standard quadrature methods ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Numerical Solution
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine and b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Equation
In mathematics, integral equations are equations in which an unknown Function (mathematics), function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ; I^1 (u), I^2(u), I^3(u), ..., I^m(u)) = 0where I^i(u) is an integral operator acting on ''u.'' Hence, integral equations may be viewed as the analog to differential equations where instead of the equation involving derivatives, the equation contains integrals. A direct comparison can be seen with the mathematical form of the general integral equation above with the general form of a differential equation which may be expressed as follows:f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ; D^1 (u), D^2(u), D^3(u), ..., D^m(u)) = 0where D^i(u) may be viewed as a differential operator of order ''i''. Due to this close connection between differential and integral equations, one can often convert between the two. For examp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Numerical Integration
In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to ''quadrature'') is more or less a synonym for ''numerical integration'', especially as applied to one-dimensional integrals. Some authors refer to numerical integration over more than one dimension as cubature; others take ''quadrature'' to include higher-dimensional integration. The basic problem in numerical integration is to compute an approximate solution to a definite integral :\int_a^b f(x) \, dx to a given degree of accuracy. If is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

System Of Linear Equations
In mathematics, a system of linear equations (or linear system) is a collection of one or more linear equations involving the same variable (math), variables. For example, :\begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in the three variables . A solution to a linear system is an assignment of values to the variables such that all the equations are simultaneously satisfied. A Equation solving, solution to the system above is given by the Tuple, ordered triple :(x,y,z)=(1,-2,-2), since it makes all three equations valid. The word "system" indicates that the equations are to be considered collectively, rather than individually. In mathematics, the theory of linear systems is the basis and a fundamental part of linear algebra, a subject which is used in most parts of modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gaussian Quadrature
In numerical analysis, a quadrature rule is an approximation of the definite integral of a function, usually stated as a weighted sum of function values at specified points within the domain of integration. (See numerical integration for more on quadrature rules.) An -point Gaussian quadrature rule, named after Carl Friedrich Gauss, is a quadrature rule constructed to yield an exact result for polynomials of degree or less by a suitable choice of the nodes and weights for . The modern formulation using orthogonal polynomials was developed by Carl Gustav Jacobi in 1826. The most common domain of integration for such a rule is taken as , so the rule is stated as :\int_^1 f(x)\,dx \approx \sum_^n w_i f(x_i), which is exact for polynomials of degree or less. This exact rule is known as the Gauss-Legendre quadrature rule. The quadrature rule will only be an accurate approximation to the integral above if is well-approximated by a polynomial of degree or less on . The Gaus ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fredholm Equation
In mathematics, the Fredholm integral equation is an integral equation whose solution gives rise to Fredholm theory, the study of Fredholm kernels and Fredholm operators. The integral equation was studied by Ivar Fredholm. A useful method to solve such equations, the Adomian decomposition method, is due to George Adomian. Equation of the first kind A Fredholm equation is an integral equation in which the term containing the kernel function (defined below) has constants as integration limits. A closely related form is the Volterra integral equation which has variable integral limits. An inhomogeneous Fredholm equation of the first kind is written as and the problem is, given the continuous kernel function K and the function g, to find the function f. An important case of these types of equation is the case when the kernel is a function only of the difference of its arguments, namely K(t,s)=K(ts), and the limits of integration are ±∞, then the right hand side of the equ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Boundary Element Method
The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in ''boundary integral'' form), including fluid mechanics, acoustics, electromagnetics (where the technique is known as Method of moments (electromagnetics), method of moments or abbreviated as MoM), fracture mechanics, and contact mechanics. Mathematical basis The integral equation may be regarded as an exact solution of the governing partial differential equation. The boundary element method attempts to use the given boundary conditions to fit boundary values into the integral equation, rather than values throughout the space defined by a partial differential equation. Once this is done, in the post-processing stage, the integral equation can then be used again to calculate numerically the solution directly at any desired point in the interior of the solution domain. BEM is applicable to problems for which G ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Joan E
Joan may refer to: People and fictional characters *Joan (given name), including a list of women, men and fictional characters *:Joan of Arc, a French military heroine *Joan (surname) Weather events *Tropical Storm Joan (other), multiple tropical cyclones are named Joan Music * ''Joan'' (album), a 1967 album by Joan Baez *"Joan", a song by The Art Bears from their 1978 album ''Hopes and Fears'' *"Joan", a song by Lene Lovich from her 1980 album ''Flex'' *"Joan", a song by Erasure from their 1991 album ''Chorus'' *"Joan", a song by The Innocence Mission from their 1991 album ''Umbrella'' *"Joan", a song by God Is My Co-Pilot from their 1992 album ''I Am Not This Body'' Other uses *Jōan (era), a Japanese era name * ''Joan'' (play), 2015 one-woman play written by Lucy J. Skillbeck *Joan Township, Ontario, a geographic township See also *''Jo-an'' tea house, National Treasure in Inuyama, Aichi Prefecture, Japan * *Jane (other) *Jean (other) *Jeanne (di ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Integral Equations
In mathematics, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ; I^1 (u), I^2(u), I^3(u), ..., I^m(u)) = 0where I^i(u) is an integral operator acting on ''u.'' Hence, integral equations may be viewed as the analog to differential equations where instead of the equation involving derivatives, the equation contains integrals. A direct comparison can be seen with the mathematical form of the general integral equation above with the general form of a differential equation which may be expressed as follows:f(x_1,x_2,x_3,...,x_n ; u(x_1,x_2,x_3,...,x_n) ; D^1 (u), D^2(u), D^3(u), ..., D^m(u)) = 0where D^i(u) may be viewed as a differential operator of order ''i''. Due to this close connection between differential and integral equations, one can often convert between the two. For example, one method of solvi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Analysis
Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic computation, symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]