Numerical Certification
   HOME
*





Numerical Certification
Numerical certification is the process of verifying the correctness of a candidate solution to a system of equations. In (numerical) computational mathematics, such as numerical algebraic geometry, candidate solutions are computed algorithmically, but there is the possibility that errors have corrupted the candidates. For instance, in addition to the inexactness of input data and candidate solutions, numerical errors or errors in the discretization of the problem may result in corrupted candidate solutions. The goal of numerical certification is to provide a certificate which proves which of these candidates are, indeed, approximate solutions. Methods for certification can be divided into two flavors: ''a priori'' certification and ''a posteriori'' certification. ''A posteriori'' certification confirms the correctness of the final answers (regardless of how they are generated), while ''a priori'' certification confirms the correctness of each step of a specific computation. A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


System Of Equations
In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single equations, namely as a: * System of linear equations, * System of nonlinear equations, * System of bilinear equations, * System of polynomial equations, * System of differential equations, or a * System of difference equations See also * Simultaneous equations model, a statistical model in the form of simultaneous linear equations * Elementary algebra Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entai ..., for elementary methods {{set index article Equations Broad-concept articles de:Gleichung#Gleichungssysteme ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mean Value Theorem
In mathematics, the mean value theorem (or Lagrange theorem) states, roughly, that for a given planar arc between two endpoints, there is at least one point at which the tangent to the arc is parallel to the secant through its endpoints. It is one of the most important results in real analysis. This theorem is used to prove statements about a function on an interval starting from local hypotheses about derivatives at points of the interval. More precisely, the theorem states that if f is a continuous function on the closed interval , b/math> and differentiable on the open interval (a,b), then there exists a point c in (a,b) such that the tangent at c is parallel to the secant line through the endpoints \big(a, f(a)\big) and \big(b, f(b)\big), that is, : f'(c)=\frac. History A special case of this theorem for inverse interpolation of the sine was first described by Parameshvara (1380–1460), from the Kerala School of Astronomy and Mathematics in India, in his commentari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quadratic Convergence
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence (x_n) that converges to x^* is said to have ''order of convergence'' q \geq 1 and ''rate of convergence'' \mu if : \lim _ \frac=\mu. The rate of convergence \mu is also called the ''asymptotic error constant''. Note that this terminology is not standardized and some authors will use ''rate'' where this article uses ''order'' (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homotopy Continuation
Numerical algebraic geometry is a field of computational mathematics, particularly computational algebraic geometry, which uses methods from numerical analysis to study and manipulate the solutions of systems of polynomial equations. Homotopy continuation The primary computational method used in numerical algebraic geometry is homotopy continuation, in which a homotopy is formed between two polynomial systems, and the isolated solutions (points) of one are continued to the other. This is a specialization of the more general method of numerical continuation. Let z represent the variables of the system. By abuse of notation, and to facilitate the spectrum of ambient spaces over which one can solve system, we do not use vector notation for z. Similarly for the polynomial systems f and g. Current canonical notation calls the start system g, and the target system, i.e., the system to solve, f. A very common homotopy, the straight-line homotopy, between f and g is H(z,t) = (1-t) f(z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Algebraic Geometry
Numerical algebraic geometry is a field of computational mathematics, particularly computational algebraic geometry, which uses methods from numerical analysis to study and manipulate the solutions of systems of polynomial equations. Homotopy continuation The primary computational method used in numerical algebraic geometry is homotopy continuation, in which a homotopy is formed between two polynomial systems, and the isolated solutions (points) of one are continued to the other. This is a specialization of the more general method of numerical continuation. Let z represent the variables of the system. By abuse of notation, and to facilitate the spectrum of ambient spaces over which one can solve system, we do not use vector notation for z. Similarly for the polynomial systems f and g. Current canonical notation calls the start system g, and the target system, i.e., the system to solve, f. A very common homotopy, the straight-line homotopy, between f and g is H(z,t) = (1-t) f(z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uniform Norm
In mathematical analysis, the uniform norm (or ) assigns to real- or complex-valued bounded functions defined on a set the non-negative number :\, f\, _\infty = \, f\, _ = \sup\left\. This norm is also called the , the , the , or, when the supremum is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions converges to under the metric derived from the uniform norm if and only if converges to uniformly. If is a continuous function on a closed and bounded interval, or more generally a compact set, then it is bounded and the supremum in the above definition is attained by the Weierstrass extreme value theorem, so we can replace the supremum by the maximum. In this case, the norm is also called the . In particular, if is some vector such that x = \left(x_1, x_2, \ldots, x_n\right) in finite dimensional coordinate space, it takes the form: :\, x\, _\infty := \max \left(\left, x_1\ , \ldots , \left, x_n\\right). Metric and t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Norm
In mathematics, a matrix norm is a vector norm in a vector space whose elements (vectors) are matrices (of given dimensions). Preliminaries Given a field K of either real or complex numbers, let K^ be the -vector space of matrices with m rows and n columns and entries in the field K. A matrix norm is a norm on K^. This article will always write such norms with double vertical bars (like so: \, A\, ). Thus, the matrix norm is a function \, \cdot\, : K^ \to \R that must satisfy the following properties: For all scalars \alpha \in K and matrices A, B \in K^, *\, A\, \ge 0 (''positive-valued'') *\, A\, = 0 \iff A=0_ (''definite'') *\left\, \alpha A\right\, =\left, \alpha\ \left\, A\right\, (''absolutely homogeneous'') *\, A+B\, \le \, A\, +\, B\, (''sub-additive'' or satisfying the ''triangle inequality'') The only feature distinguishing matrices from rearranged vectors is multiplication. Matrix norms are particularly useful if they are also sub-multiplicative: *\left\, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interval Arithmetic
Interval arithmetic (also known as interval mathematics, interval analysis, or interval computation) is a mathematical technique used to put bounds on rounding errors and measurement errors in mathematical computation. Numerical methods using interval arithmetic can guarantee reliable and mathematically correct results. Instead of representing a value as a single number, interval arithmetic represents each value as a range of possibilities. For example, instead of saying the height of someone is approximately 2 meters, one could using interval arithmetic, say that the height of the person is definitely between 1.97 meters and 2.03 meters. Mathematically, using interval arithmetic, instead of working with an uncertain real-valued variable x, one works with an interval ,b/math> that defines the range of values that x can have. In other words, any value of the variable x lies in the closed interval between a and b. A function f, when applied to x, yields an inexact value; f ins ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Contractive
In mathematics, a contraction mapping, or contraction or contractor, on a metric space (''M'', ''d'') is a function ''f'' from ''M'' to itself, with the property that there is some real number 0 \leq k < 1 such that for all ''x'' and ''y'' in ''M'', :d(f(x),f(y)) \leq k\,d(x,y). The smallest such value of ''k'' is called the Lipschitz constant of ''f''. Contractive maps are sometimes called Lipschitzian maps. If the above condition is instead satisfied for ''k'' ≤ 1, then the mapping is said to be a . More generally, the idea of a contractive mapping can be defined for maps between metric spaces. Thus, if (''M'', ''d'') and (''N'', ''d) are two metric spaces, then f:M \rightarrow N is a contractive mapping if there is a constant 0 \leq k < 1 such that :
[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Numerical Algebraic Geometry
Numerical algebraic geometry is a field of computational mathematics, particularly computational algebraic geometry, which uses methods from numerical analysis to study and manipulate the solutions of systems of polynomial equations. Homotopy continuation The primary computational method used in numerical algebraic geometry is homotopy continuation, in which a homotopy is formed between two polynomial systems, and the isolated solutions (points) of one are continued to the other. This is a specialization of the more general method of numerical continuation. Let z represent the variables of the system. By abuse of notation, and to facilitate the spectrum of ambient spaces over which one can solve system, we do not use vector notation for z. Similarly for the polynomial systems f and g. Current canonical notation calls the start system g, and the target system, i.e., the system to solve, f. A very common homotopy, the straight-line homotopy, between f and g is H(z,t) = (1-t) f(z ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brouwer Fixed-point Theorem
Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a compact convex set to itself there is a point x_0 such that f(x_0)=x_0. The simplest forms of Brouwer's theorem are for continuous functions f from a closed interval I in the real numbers to itself or from a closed disk D to itself. A more general form than the latter is for continuous functions from a convex compact subset K of Euclidean space to itself. Among hundreds of fixed-point theorems, Brouwer's is particularly well known, due in part to its use across numerous fields of mathematics. In its original field, this result is one of the key theorems characterizing the topology of Euclidean spaces, along with the Jordan curve theorem, the hairy ball theorem, the invariance of dimension and the Borsuk–Ulam theorem. This gives it a place among the fundamental theorems of topology. The theorem is also used for proving ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Rate Of Convergence
In numerical analysis, the order of convergence and the rate of convergence of a convergent sequence are quantities that represent how quickly the sequence approaches its limit. A sequence (x_n) that converges to x^* is said to have ''order of convergence'' q \geq 1 and ''rate of convergence'' \mu if : \lim _ \frac=\mu. The rate of convergence \mu is also called the ''asymptotic error constant''. Note that this terminology is not standardized and some authors will use ''rate'' where this article uses ''order'' (e.g., ). In practice, the rate and order of convergence provide useful insights when using iterative methods for calculating numerical approximations. If the order of convergence is higher, then typically fewer iterations are necessary to yield a useful approximation. Strictly speaking, however, the asymptotic behavior of a sequence does not give conclusive information about any finite part of the sequence. Similar concepts are used for discretization methods. The solutio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]