Nielsen–Olesen Vortex
   HOME
*





Nielsen–Olesen Vortex
In theoretical physics, a Nielsen–Olesen vortex is a point-like object localized in two spatial dimensions or, equivalently, a classical solution of field theory with the same property. This particular solution occurs if the configuration space of scalar fields contains non-contractible circles. A circle surrounding the vortex at infinity may be "wrapped" once on the other circle in the configuration space. A configuration with this non-trivial topological property is called the Nielsen–Olesen vortex, after Holger Bech Nielsen and Poul Olesen (1973). The solution is formally identical to the solution of Quantum vortex in superconductor. See also * Nielsen–Olsen string * Abrikosov vortex *Montonen–Olive duality *S-duality In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoret ... R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Theoretical Physics
Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena. The advancement of science generally depends on the interplay between experimental studies and theory. In some cases, theoretical physics adheres to standards of mathematical rigour while giving little weight to experiments and observations.There is some debate as to whether or not theoretical physics uses mathematics to build intuition and illustrativeness to extract physical insight (especially when normal experience fails), rather than as a tool in formalizing theories. This links to the question of it using mathematics in a less formally rigorous, and more intuitive or heuristic way than, say, mathematical physics. For example, while developing special relativity, Albert Einstein was concerned wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Field Theory (physics)
In physics, a field is a physical quantity, represented by a scalar, vector, or tensor, that has a value for each point in space and time. For example, on a weather map, the surface temperature is described by assigning a number to each point on the map; the temperature can be considered at a certain point in time or over some interval of time, to study the dynamics of temperature change. A surface wind map, assigning an arrow to each point on a map that describes the wind speed and direction at that point, is an example of a vector field, i.e. a 1-dimensional (rank-1) tensor field. Field theories, mathematical descriptions of how field values change in space and time, are ubiquitous in physics. For instance, the electric field is another rank-1 tensor field, while electrodynamics can be formulated in terms of two interacting vector fields at each point in spacetime, or as a single-rank 2-tensor field. In the modern framework of the quantum theory of fields, even without refer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Holger Bech Nielsen
Holger Bech Nielsen (born 25 August 1941) is a Danish theoretical physicist and professor emeritus at the Niels Bohr Institute, at the University of Copenhagen, where he started studying physics in 1961. Work Nielsen has made original contributions to theoretical particle physics, specifically in the field of string theory. Independently of Nambu and Susskind, he was the first to propose that the Veneziano model was actually a theory of strings, leading him to be considered among the fathers of string theory. He was awarded the Humboldt Prize in 2001 for his research. Several physics concepts are named after him, e.g. Nielsen–Olesen vortex and the Nielsen-Ninomiya no-go theorem for representing chiral fermions on the lattice. In the original Dual-Models, which later would be recognized as the origins of string theory, the Koba-Nielsen variables are also named after him and his collaborator Ziro Koba. Nielsen is known in Denmark for his enthusiastic public lectures on physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poul Olesen
Poul is a Danish language, Danish masculine given name. It is the Danish cognate of the name Paul (name), Paul. Poul may refer to: People *Poul Andersen (resistance member), Poul Andersen (1922–2006), Danish printer *Poul Anderson (1926–2001), American writer *Poul Erik Andreasen (born 1949), Danish football player and manager *Poul Bang (1905–1967), Danish filmmaker *Poul Anker Bech (1942–2009), Danish painter *Poul Bjerre (1876–1964), Swedish psychiatrist *Poul Borum (1934–1996), Danish writer *Poul Bundgaard (1922–1998), Danish actor *Poul Simon Christiansen (1855–1933), Danish painter *Poul Skytte Christoffersen (born 1946), Danish diplomat *Poul Elming (born 1949), Danish opera singer *Poul Glargaard (1942–2011), Danish actor *Poul Hansen (1913–1966), Danish politician *Poul Hartling (1914–2000), Danish politician and Prime Minister *Poul Heegaard (1871–1948), Danish mathematician *Poul Henningsen (1894–1967), Danish writer and architect *Poul Ric ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Vortex
In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was first predicted by Lars Onsager in 1949 in connection with superfluid helium. Onsager reasoned that quantisation of vorticity is a direct consequence of the existence of a superfluid order parameter as a spatially continuous wavefunction. Onsager also pointed out that quantum vortices describe the circulation of superfluid and conjectured that their excitations are responsible for superfluid phase transitions. These ideas of Onsager were further developed by Richard Feynman in 1955 and in 1957 were applied to describe the magnetic phase diagram of type-II superconductors by Alexei Alexeyevich Abrikosov. In 1935 Fritz London published a very closely related work on magnetic flux quantization in superconductors. London's fluxoid can also be vie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Abrikosov Vortex
In superconductivity, fluxon (also called a Abrikosov vortex and quantum vortex) is a vortex of supercurrent in a type-II superconductor, used by Alexei Abrikosov to explain magnetic behavior of type-II superconductors. Abrikosov vortices occur generically in the Ginzburg–Landau theory of superconductivity. Overview The solution is a combination of fluxon solution by Fritz London, combined with a concept of core of quantum vortex by Lars Onsager. In the quantum vortex, supercurrent circulates around the normal (i.e. non-superconducting) core of the vortex. The core has a size \sim\xi — the superconducting coherence length (parameter of a Ginzburg–Landau theory). The supercurrents decay on the distance about \lambda (London penetration depth) from the core. Note that in type-II superconductors \lambda>\xi/\sqrt. The circulating supercurrents induce magnetic fields with the total flux equal to a single flux quantum \Phi_0. Therefore, an Abrikosov vortex is often called ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Montonen–Olive Duality
Montonen–Olive duality or electric–magnetic duality is the oldest known example of strong–weak duality or S-duality according to current terminology. It generalizes the electro-magnetic symmetry of Maxwell's equations by stating that magnetic monopoles, which are usually viewed as emergent quasiparticles that are "composite" (i.e. they are solitons or topological defects), can in fact be viewed as "elementary" quantized particles with electrons playing the reverse role of "composite" topological solitons; the viewpoints are equivalent and the situation dependent on the duality. It was later proven to hold true when dealing with a ''N'' = 4 supersymmetric Yang–Mills theory. It is named after Finnish physicist Claus Montonen and British physicist David Olive after they proposed the idea in their academic paper '' Magnetic monopoles as gauge particles?'' where they state: S-duality is now a basic ingredient in topological quantum field theories and string theories, e ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

S-duality
In theoretical physics, S-duality (short for strong–weak duality, or Sen duality) is an equivalence of two physical theories, which may be either quantum field theories or string theories. S-duality is useful for doing calculations in theoretical physics because it relates a theory in which calculations are difficult to a theory in which they are easier. In quantum field theory, S-duality generalizes a well established fact from classical electrodynamics, namely the invariance of Maxwell's equations under the interchange of electric and magnetic fields. One of the earliest known examples of S-duality in quantum field theory is Montonen–Olive duality which relates two versions of a quantum field theory called ''N'' = 4 supersymmetric Yang–Mills theory. Recent work of Anton Kapustin and Edward Witten suggests that Montonen–Olive duality is closely related to a research program in mathematics called the geometric Langlands program. Another realization of S-duality in quan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quantum Field Theory
In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and in condensed matter physics to construct models of quasiparticles. QFT treats particles as excited states (also called Quantum, quanta) of their underlying quantum field (physics), fields, which are more fundamental than the particles. The equation of motion of the particle is determined by minimization of the Lagrangian, a functional of fields associated with the particle. Interactions between particles are described by interaction terms in the Lagrangian (field theory), Lagrangian involving their corresponding quantum fields. Each interaction can be visually represented by Feynman diagrams according to perturbation theory (quantum mechanics), perturbation theory in quantum mechanics. History Quantum field theory emerged from the wo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]