HOME
*





Niederreiter Cryptosystem
In cryptography, the Niederreiter cryptosystem is a variation of the McEliece cryptosystem developed in 1986 by Harald Niederreiter. It applies the same idea to the parity check matrix, H, of a linear code. Niederreiter is equivalent to McEliece from a security point of view. It uses a syndrome as ciphertext and the message is an error pattern. The encryption of Niederreiter is about ten times faster than the encryption of McEliece. Niederreiter can be used to construct a digital signature scheme. Scheme definition A special case of Niederreiter's original proposal was broken but the system is secure when used with a Binary Goppa code. Key generation #Alice selects a binary (''n'', ''k'')-linear Goppa code, ''G'', capable of correcting ''t'' errors. This code possesses an efficient decoding algorithm. #Alice generates a (''n'' − ''k'') × ''n'' parity check matrix, ''H'', for the code, ''G''. #Alice selects a random (''n'' − ''k'') × (''n'' − ''k'') binary invertible matri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


McEliece Cryptosystem
In cryptography, the McEliece cryptosystem is an asymmetric encryption algorithm developed in 1978 by Robert McEliece. It was the first such scheme to use randomization in the encryption process. The algorithm has never gained much acceptance in the cryptographic community, but is a candidate for "post-quantum cryptography", as it is immune to attacks using Shor's algorithm and – more generally – measuring coset states using Fourier sampling. The algorithm is based on the hardness of decoding a general linear code (which is known to be NP-hard ). For a description of the private key, an error-correcting code is selected for which an efficient decoding algorithm is known, and which is able to correct t errors. The original algorithm uses binary Goppa codes (subfield codes of geometric Goppa codes of a genus-0 curve over finite fields of characteristic 2); these codes can be efficiently decoded, thanks to an algorithm due to Patterson. The public key is derived from the priv ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Harald Niederreiter
Harald G. Niederreiter (born June 7, 1944) is an Austrian mathematician known for his work in discrepancy theory, algebraic geometry, quasi-Monte Carlo methods, and cryptography. Education and career Niederreiter was born on June 7, 1944, in Vienna, and grew up in Salzburg... He began studying mathematics at the University of Vienna in 1963, and finished his doctorate there in 1969, with a thesis on discrepancy in compact abelian groups supervised by Edmund Hlawka. He began his academic career as an assistant professor at the University of Vienna, but soon moved to Southern Illinois University. During this period he also visited the University of Illinois at Urbana-Champaign, Institute for Advanced Study, and University of California, Los Angeles. In 1978 he moved again, becoming the head of a new mathematics department at the University of the West Indies in Jamaica. In 1981 he returned to Austria for a post at the Austrian Academy of Sciences, where from 1989 to 2000 he served ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Parity Check Matrix
In coding theory, a parity-check matrix of a linear block code ''C'' is a matrix which describes the linear relations that the components of a codeword must satisfy. It can be used to decide whether a particular vector is a codeword and is also used in decoding algorithms. Definition Formally, a parity check matrix ''H'' of a linear code ''C'' is a generator matrix of the dual code, ''C''⊥. This means that a codeword c is in ''C ''if and only if the matrix-vector product (some authors would write this in an equivalent form, c''H''⊤ = 0.) The rows of a parity check matrix are the coefficients of the parity check equations. That is, they show how linear combinations of certain digits (components) of each codeword equal zero. For example, the parity check matrix :H = \left \begin 0&0&1&1\\ 1&1&0&0 \end \right, compactly represents the parity check equations, :\begin c_3 + c_4 &= 0 \\ c_1 + c_2 &= 0 \end, that must be satisfied for the vector (c_1, c_2, c_3, c_4) to be a co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Digital Signature
A digital signature is a mathematical scheme for verifying the authenticity of digital messages or documents. A valid digital signature, where the prerequisites are satisfied, gives a recipient very high confidence that the message was created by a known sender (authenticity), and that the message was not altered in transit (integrity). Digital signatures are a standard element of most cryptographic protocol suites, and are commonly used for software distribution, financial transactions, contract management software, and in other cases where it is important to detect forgery or tampering. Digital signatures are often used to implement electronic signatures, which includes any electronic data that carries the intent of a signature, but not all electronic signatures use digital signatures.

[...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Binary Goppa Code
In mathematics and computer science, the binary Goppa code is an error-correcting code that belongs to the class of general Goppa codes originally described by Valerii Denisovich Goppa, but the binary structure gives it several mathematical advantages over non-binary variants, also providing a better fit for common usage in computers and telecommunication. Binary Goppa codes have interesting properties suitable for cryptography in McEliece-like cryptosystems and similar setups. Construction and properties A binary Goppa code is defined by a polynomial g(x) of degree t over a finite field GF(2^m) with no repeated roots, and a sequence L_1, ..., L_n of n distinct elements from GF(2^m) that are not roots of g. Codewords belong to the kernel of the syndrome function, forming a subspace of \^n: : \Gamma(g,L)=\left\ The code defined by a tuple (g,L) has dimension at least n-mt and distance at least 2t+1, thus it can encode messages of length at least n-mt using codewords of size n ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Invertible Matrix
In linear algebra, an -by- square matrix is called invertible (also nonsingular or nondegenerate), if there exists an -by- square matrix such that :\mathbf = \mathbf = \mathbf_n \ where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix that satisfies the prior equation for a given invertible matrix . A square matrix that is ''not'' invertible is called singular or degenerate. A square matrix is singular if and only if its determinant is zero. Singular matrices are rare in the sense that if a square matrix's entries are randomly selected from any finite region on the number line or complex plane, the probability that the matrix is singular is 0, that is, it will "almost never" be singular. Non-square matrices (-by- matrices for which ) do not hav ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation Matrix
In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column and 0s elsewhere. Each such matrix, say , represents a permutation of elements and, when used to multiply another matrix, say , results in permuting the rows (when pre-multiplying, to form ) or columns (when post-multiplying, to form ) of the matrix . Definition Given a permutation of ''m'' elements, :\pi : \lbrace 1, \ldots, m \rbrace \to \lbrace 1, \ldots, m \rbrace represented in two-line form by :\begin 1 & 2 & \cdots & m \\ \pi(1) & \pi(2) & \cdots & \pi(m) \end, there are two natural ways to associate the permutation with a permutation matrix; namely, starting with the ''m'' × ''m'' identity matrix, , either permute the columns or permute the rows, according to . Both methods of defining permutation matrices appear in the literature and the properties expressed in one representation can be easily converted to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Syndrome Decoding
In coding theory, decoding is the process of translating received messages into codewords of a given code. There have been many common methods of mapping messages to codewords. These are often used to recover messages sent over a noisy channel, such as a binary symmetric channel. Notation C \subset \mathbb_2^n is considered a binary code with the length n; x,y shall be elements of \mathbb_2^n; and d(x,y) is the distance between those elements. Ideal observer decoding One may be given the message x \in \mathbb_2^n, then ideal observer decoding generates the codeword y \in C. The process results in this solution: :\mathbb(y \mbox \mid x \mbox) For example, a person can choose the codeword y that is most likely to be received as the message x after transmission. Decoding conventions Each codeword does not have an expected possibility: there may be more than one codeword with an equal likelihood of mutating into the received message. In such a case, the sender and receiver(s) must a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hash Function
A hash function is any function that can be used to map data of arbitrary size to fixed-size values. The values returned by a hash function are called ''hash values'', ''hash codes'', ''digests'', or simply ''hashes''. The values are usually used to index a fixed-size table called a ''hash table''. Use of a hash function to index a hash table is called ''hashing'' or ''scatter storage addressing''. Hash functions and their associated hash tables are used in data storage and retrieval applications to access data in a small and nearly constant time per retrieval. They require an amount of storage space only fractionally greater than the total space required for the data or records themselves. Hashing is a computationally and storage space-efficient form of data access that avoids the non-constant access time of ordered and unordered lists and structured trees, and the often exponential storage requirements of direct access of state spaces of large or variable-length keys. Use of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Tanja Lange
Tanja Lange is a German cryptographer and number theorist at the Eindhoven University of Technology. She is known for her research on post-quantum cryptography. Education and career Lange earned a diploma in mathematics in 1998 from the Technical University of Braunschweig. She completed her Ph.D. in 2001 at the Universität Duisburg-Essen. Her dissertation, jointly supervised by Gerhard Frey and YoungJu Choie, concerned ''Efficient Arithmetic on Hyperelliptic Curves''. After postdoctoral studies at Ruhr University Bochum, she became an associate professor at the Technical University of Denmark in 2005. She moved to the Eindhoven University of Technology as a full professor in 2007. At Eindhoven, she chairs the coding theory and cryptology group and is scientific director of the Eindhoven Institute for the Protection of Systems and Information. She is also the coordinator of PQCRYPTO, a European multi-university consortium to make electronic communications future-proof against t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Public-key Encryption Schemes
Public-key cryptography, or asymmetric cryptography, is the field of cryptographic systems that use pairs of related keys. Each key pair consists of a public key and a corresponding private key. Key pairs are generated with cryptographic algorithms based on mathematical problems termed one-way functions. Security of public-key cryptography depends on keeping the private key secret; the public key can be openly distributed without compromising security. In a public-key encryption system, anyone with a public key can encrypt a message, yielding a ciphertext, but only those who know the corresponding private key can decrypt the ciphertext to obtain the original message. For example, a journalist can publish the public key of an encryption key pair on a web site so that sources can send secret messages to the news organization in ciphertext. Only the journalist who knows the corresponding private key can decrypt the ciphertexts to obtain the sources' messages—an eavesdropp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]