Nicomachus's Theorem
In number theory, the sum of the first cubes is the square of the th triangular number. That is, :1^3+2^3+3^3+\cdots+n^3 = \left(1+2+3+\cdots+n\right)^2. The same equation may be written more compactly using the mathematical notation for summation: :\sum_^n k^3 = \bigg(\sum_^n k\bigg)^2. This identity is sometimes called Nicomachus's theorem, after Nicomachus of Gerasa (c. 60 – c. 120 CE). History Nicomachus, at the end of Chapter 20 of his ''Introduction to Arithmetic'', pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on. He does not go further than this, but from this it follows that the sum of the first cubes equals the sum of the first n(n+1)/2 odd numbers, that is, the odd numbers from 1 to n(n+1)-1. The average of these numbers is obviously n(n+1)/2, and there are n(n+1)/2 of them, so their sum is \bigl(n(n+1)/2\bigr)^2. Many early mathem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Nicomachus Theorem 3D
Nicomachus of Gerasa ( grc-gre, Νικόμαχος; c. 60 – c. 120 AD) was an important ancient mathematician and music theorist, best known for his works ''Introduction to Arithmetic'' and ''Manual of Harmonics'' in Greek. He was born in Gerasa, in the Roman province of Syria (now Jerash, Jordan). He was a Neopythagorean, who wrote about the mystical properties of numbers.Eric Temple Bell (1940), ''The development of mathematics'', page 83.Frank J. Swetz (2013), ''The European Mathematical Awakening'', page 17, Courier Life Little is known about the life of Nicomachus except that he was a Pythagorean who came from Gerasa.} Historians consider him a Neopythagorean based on his tendency to view numbers as having mystical properties. The age in which he lived (c. 100 AD) is only known because he mentions Thrasyllus in his ''Manual of Harmonics'', and because his ''Introduction to Arithmetic'' was apparently translated into Latin in the mid 2nd century by Apuleius.Henrietta ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
0 (number)
0 (zero) is a number representing an empty quantity. In place-value notation such as the Hindu–Arabic numeral system, 0 also serves as a placeholder numerical digit, which works by multiplying digits to the left of 0 by the radix, usually by 10. As a number, 0 fulfills a central role in mathematics as the additive identity of the integers, real numbers, and other algebraic structures. Common names for the number 0 in English are ''zero'', ''nought'', ''naught'' (), ''nil''. In contexts where at least one adjacent digit distinguishes it from the letter O, the number is sometimes pronounced as ''oh'' or ''o'' (). Informal or slang terms for 0 include ''zilch'' and ''zip''. Historically, ''ought'', ''aught'' (), and ''cipher'', have also been used. Etymology The word ''zero'' came into the English language via French from the Italian , a contraction of the Venetian form of Italian via ''ṣafira'' or ''ṣifr''. In pre-Islamic time the word (Arabic ) had the meanin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Summation By Parts
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation, named after Niels Henrik Abel who introduced it in 1826. Statement Suppose \ and \ are two sequences. Then, :\sum_^n f_k(g_-g_k) = \left(f_g_ - f_m g_m\right) - \sum_^n g_(f_- f_). Using the forward difference operator \Delta, it can be stated more succinctly as :\sum_^n f_k\Delta g_k = \left(f_ g_ - f_m g_m\right) - \sum_^ g_\Delta f_k, Summation by parts is an analogue to integration by parts: :\int f\,dg = f g - \int g\,df, or to Abel's summation formula: :\sum_^n f(k)(g_-g_)= \left(f(n)g_ - f(m) g_m\right) - \int_^n g_ f'(t) dt. An alternative statement is :f_n g_n - f_m g_m = \sum_^ f_k\Delta g_k + \sum_^ g_k\Delta f_k + \sum_^ \Delta f_k \Delta g_k which is analogous to the integration by parts formula for semimartingales. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sum Of Cubes2
Sum most commonly means the total of two or more numbers added together; see addition. Sum can also refer to: Mathematics * Sum (category theory), the generic concept of summation in mathematics * Sum, the result of summation, the addition of a sequence of numbers * 3SUM, a term from computational complexity theory * Band sum, a way of connecting mathematical knots * Connected sum, a way of gluing manifolds * Digit sum, in number theory * Direct sum, a combination of algebraic objects ** Direct sum of groups ** Direct sum of modules ** Direct sum of permutations ** Direct sum of topological groups * Einstein summation, a way of contracting tensor indices * Empty sum, a sum with no terms * Indefinite sum, the inverse of a finite difference * Kronecker sum, an operation considered a kind of addition for matrices * Matrix addition, in linear algebra * Minkowski addition, a sum of two subsets of a vector space * Power sum symmetric polynomial, in commutative algebra * Prefi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gnomon (figure)
In geometry, a gnomon is a plane figure formed by removing a similar parallelogram from a corner of a larger parallelogram; or, more generally, a figure that, added to a given figure, makes a larger figure of the same shape. Building figurate numbers Figurate numbers were a concern of Pythagorean mathematics, and Pythagoras is credited with the notion that these numbers are generated from a ''gnomon'' or basic unit. The gnomon is the piece which needs to be added to a figurate number to transform it to the next bigger one. For example, the gnomon of the square number is the odd number, of the general form 2''n'' + 1, ''n'' = 1, 2, 3, ... . The square of size 8 composed of gnomons looks like this: ~~~~~~~~\begin 8&8&8&8&8&8&8&8\\ 8&7&7&7&7&7&7&7\\ 8&7&6&6&6&6&6&6\\ 8&7&6&5&5&5&5&5\\ 8&7&6&5&4&4&4&4\\ 8&7&6&5&4&3&3&3\\ 8&7&6&5&4&3&2&2\\ 8&7&6&5&4&3&2&1 \end To transform from the ''n-square'' (the square of size ''n'') to the (''n'' + 1)-square, one adjoins 2''n'' + 1 elements: on ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Multiplication Table
In mathematics, a multiplication table (sometimes, less formally, a times table) is a mathematical table used to define a multiplication operation for an algebraic system. The decimal multiplication table was traditionally taught as an essential part of elementary arithmetic around the world, as it lays the foundation for arithmetic operations with base-ten numbers. Many educators believe it is necessary to memorize the table up to 9 × 9. History In pre-modern time The oldest known multiplication tables were used by the Babylonians about 4000 years ago. However, they used a base of 60. The oldest known tables using a base of 10 are the Chinese decimal multiplication table on bamboo strips dating to about 305 BC, during China's Warring States period. The multiplication table is sometimes attributed to the ancient Greek mathematician Pythagoras (570–495 BC). It is also called the Table of Pythagoras in many languages (for example French, Italian and Russian), so ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangular Numbers
A triangular number or triangle number counts objects arranged in an equilateral triangle. Triangular numbers are a type of figurate number, other examples being square numbers and cube numbers. The th triangular number is the number of dots in the triangular arrangement with dots on each side, and is equal to the sum of the natural numbers from 1 to . The sequence of triangular numbers, starting with the 0th triangular number, is (This sequence is included in the On-Line Encyclopedia of Integer Sequences .) Formula The triangular numbers are given by the following explicit formulas: T_n= \sum_^n k = 1+2+3+ \dotsb +n = \frac = , where \textstyle is a binomial coefficient. It represents the number of distinct pairs that can be selected from objects, and it is read aloud as " plus one choose two". The first equation can be illustrated using a visual proof. For every triangular number T_n, imagine a "half-square" arrangement of objects corresponding to the triangular numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cartesian Product
In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\times B = \. A table can be created by taking the Cartesian product of a set of rows and a set of columns. If the Cartesian product is taken, the cells of the table contain ordered pairs of the form . One can similarly define the Cartesian product of ''n'' sets, also known as an ''n''-fold Cartesian product, which can be represented by an ''n''-dimensional array, where each element is an ''n''-tuple. An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes, whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product. Examples A deck of cards An ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Lattice
In mathematics, the square lattice is a type of lattice in a two-dimensional Euclidean space. It is the two-dimensional version of the integer lattice, denoted as . It is one of the five types of two-dimensional lattices as classified by their symmetry groups; its symmetry group in IUC notation as , Coxeter notation as , and orbifold notation as . Two orientations of an image of the lattice are by far the most common. They can conveniently be referred to as the upright square lattice and diagonal square lattice; the latter is also called the centered square lattice.. They differ by an angle of 45°. This is related to the fact that a square lattice can be partitioned into two square sub-lattices, as is evident in the colouring of a checkerboard. Symmetry The square lattice's symmetry category is wallpaper group . A pattern with this lattice of translational symmetry cannot have more, but may have less symmetry than the lattice itself. An upright square lattice can be viewed ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Square Pyramidal Number
In mathematics, a pyramid number, or square pyramidal number, is a natural number that counts the number of stacked spheres in a pyramid with a square base. The study of these numbers goes back to Archimedes and Fibonacci. They are part of a broader topic of figurate numbers representing the numbers of points forming regular patterns within different shapes. As well as counting spheres in a pyramid, these numbers can be described algebraically as a sum of the first n positive square numbers, or as the values of a cubic polynomial. They can be used to solve several other counting problems, including counting squares in a square grid and counting acute triangles formed from the vertices of an odd regular polygon. They equal the sums of consecutive tetrahedral numbers, and are one-fourth of a larger tetrahedral number. The sum of two consecutive square pyramidal numbers is an octahedral number. History The pyramidal numbers were one of the few types of three-dimensional figurate num ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Figurate Number
The term figurate number is used by different writers for members of different sets of numbers, generalizing from triangular numbers to different shapes (polygonal numbers) and different dimensions (polyhedral numbers). The term can mean * polygonal number * a number represented as a discrete -dimensional regular geometry, geometric pattern of -dimensional Ball (mathematics), balls such as a polygonal number (for ) or a polyhedral number (for ). * a member of the subset of the sets above containing only triangular numbers, pyramidal numbers, and their analogs in other dimensions. Terminology Some kinds of figurate number were discussed in the 16th and 17th centuries under the name "figural number". In historical works about Greek mathematics the preferred term used to be ''figured number''. In a use going back to Jacob Bernoulli's Ars Conjectandi, the term ''figurate number'' is used for triangular numbers made up of successive integers, tetrahedral numbers made up of successi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
100 (number)
100 or one hundred (Roman numeral: C) is the natural number following 99 and preceding 101. In medieval contexts, it may be described as the short hundred or five score in order to differentiate the English and Germanic use of "hundred" to describe the long hundred of six score or 120. In mathematics 100 is the square of 10 (in scientific notation it is written as 102). The standard SI prefix for a hundred is " hecto-". 100 is the basis of percentages (''per cent'' meaning "per hundred" in Latin), with 100% being a full amount. 100 is a Harshad number in decimal, and also in base-four, a base in-which it is also a self-descriptive number. 100 is the sum of the first nine prime numbers, from 2 through 23. It is also divisible by the number of primes below it, 25. 100 cannot be expressed as the difference between any integer and the total of coprimes below it, making it a noncototient. 100 has a reduced totient of 20, and an Euler totient of 40. A totient value of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |