HOME
*





Nevanlinna Invariant
In mathematics, the Nevanlinna invariant of an ample divisor ''D'' on a normal projective variety ''X'' is a real number connected with the rate of growth of the number of rational points on the variety with respect to the embedding defined by the divisor. The concept is named after Rolf Nevanlinna. Formal definition Formally, α(''D'') is the infimum of the rational numbers ''r'' such that K_X + r D is in the closed real cone of effective divisors in the Néron–Severi group of ''X''. If α is negative, then ''X'' is pseudo-canonical. It is expected that α(''D'') is always a rational number. Connection with height zeta function The Nevanlinna invariant has similar formal properties to the abscissa of convergence of the height zeta function and it is conjectured that they are essentially the same. More precisely, Batyrev–Manin conjectured the following. Let ''X'' be a projective variety over a number field ''K'' with ample divisor ''D'' giving rise to an embedding and hei ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ample Divisor
In mathematics, a distinctive feature of algebraic geometry is that some line bundles on a projective variety can be considered "positive", while others are "negative" (or a mixture of the two). The most important notion of positivity is that of an ample line bundle, although there are several related classes of line bundles. Roughly speaking, positivity properties of a line bundle are related to having many global sections. Understanding the ample line bundles on a given variety ''X'' amounts to understanding the different ways of mapping ''X'' into projective space. In view of the correspondence between line bundles and divisors (built from codimension-1 subvarieties), there is an equivalent notion of an ample divisor. In more detail, a line bundle is called basepoint-free if it has enough sections to give a morphism to projective space. A line bundle is semi-ample if some positive power of it is basepoint-free; semi-ampleness is a kind of "nonnegativity". More strongly, a line bun ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Variety
In algebraic geometry, an algebraic variety or scheme ''X'' is normal if it is normal at every point, meaning that the local ring at the point is an integrally closed domain. An affine variety ''X'' (understood to be irreducible) is normal if and only if the ring ''O''(''X'') of regular functions on ''X'' is an integrally closed domain. A variety ''X'' over a field is normal if and only if every finite birational morphism from any variety ''Y'' to ''X'' is an isomorphism. Normal varieties were introduced by . Geometric and algebraic interpretations of normality A morphism of varieties is finite if the inverse image of every point is finite and the morphism is proper. A morphism of varieties is birational if it restricts to an isomorphism between dense open subsets. So, for example, the cuspidal cubic curve ''X'' in the affine plane ''A''2 defined by ''x''2 = ''y''3 is not normal, because there is a finite birational morphism ''A''1 → ''X'' (namely, ''t'' maps to (''t''3, ''t''2) ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Projective Variety
In algebraic geometry, a projective variety over an algebraically closed field ''k'' is a subset of some projective ''n''-space \mathbb^n over ''k'' that is the zero-locus of some finite family of homogeneous polynomials of ''n'' + 1 variables with coefficients in ''k'', that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of \mathbb^n. A projective variety is a projective curve if its dimension is one; it is a projective surface if its dimension is two; it is a projective hypersurface if its dimension is one less than the dimension of the containing projective space; in this case it is the set of zeros of a single homogeneous polynomial. If ''X'' is a projective variety defined by a homogeneous prime ideal ''I'', then the quotient ring :k _0, \ldots, x_nI is called the homogeneous coordinate ring of ''X''. Basic invariants of ''X'' such as the degree and the dim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rolf Nevanlinna
Rolf Herman Nevanlinna (né Neovius; 22 October 1895 – 28 May 1980) was a Finnish mathematician who made significant contributions to complex analysis. Background Nevanlinna was born Rolf Herman Neovius, becoming Nevanlinna in 1906 when his father changed the family name. The Neovius-Nevanlinna family contained many mathematicians: Edvard Engelbert Neovius (Rolf's grandfather) taught mathematics and topography at a military academy; Edvard Rudolf Neovius (Rolf's uncle) was a professor of mathematics at the University of Helsinki from 1883 to 1900; Lars Theodor Neovius-Nevanlinna (Rolf's uncle) was an author of mathematical textbooks; and Otto Wilhelm Neovius-Nevanlinna (Rolf's father) was a physicist, astronomer and mathematician. After Otto obtained his Ph.D. in physics from the University of Helsinki, he studied at the Pulkovo Observatory with the German astronomer Herman Romberg, whose daughter, Margarete Henriette Louise Romberg, he married in 1892. Otto and Margarete then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Infimum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest lower bound'' (abbreviated as ) is also commonly used. The supremum (abbreviated sup; plural suprema) of a subset S of a partially ordered set P is the least element in P that is greater than or equal to each element of S, if such an element exists. Consequently, the supremum is also referred to as the ''least upper bound'' (or ). The infimum is in a precise sense dual to the concept of a supremum. Infima and suprema of real numbers are common special cases that are important in analysis, and especially in Lebesgue integration. However, the general definitions remain valid in the more abstract setting of order theory where arbitrary partially ordered sets are considered. The concepts of infimum and supremum are close to minimum and maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Effective Divisor
In algebraic geometry, divisors are a generalization of codimension-1 subvarieties of algebraic varieties. Two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil by David Mumford). Both are derived from the notion of divisibility in the integers and algebraic number fields. Globally, every codimension-1 subvariety of projective space is defined by the vanishing of one homogeneous polynomial; by contrast, a codimension-''r'' subvariety need not be definable by only ''r'' equations when ''r'' is greater than 1. (That is, not every subvariety of projective space is a complete intersection.) Locally, every codimension-1 subvariety of a smooth variety can be defined by one equation in a neighborhood of each point. Again, the analogous statement fails for higher-codimension subvarieties. As a result of this property, much of algebraic geometry studies an arbitrary variety by analysing its codimension-1 subvarieties an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Néron–Severi Group
In algebraic geometry, the Néron–Severi group of a variety is the group of divisors modulo algebraic equivalence; in other words it is the group of components of the Picard scheme of a variety. Its rank is called the Picard number. It is named after Francesco Severi and André Néron. Definition In the cases of most importance to classical algebraic geometry, for a complete variety ''V'' that is non-singular, the connected component of the Picard scheme is an abelian variety written :Pic0(''V''). The quotient :Pic(''V'')/Pic0(''V'') is an abelian group NS(''V''), called the Néron–Severi group of ''V''. This is a finitely-generated abelian group by the Néron–Severi theorem, which was proved by Severi over the complex numbers and by Néron over more general fields. In other words, the Picard group fits into an exact sequence :1\to \mathrm^0(V)\to\mathrm(V)\to \mathrm(V)\to 0 The fact that the rank is finite is Francesco Severi's theorem of the base; the rank is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pseudo-canonical Variety
In mathematics, a pseudo-canonical variety is an algebraic variety of "general type". Formal definition Formally, a variety ''X'' is pseudo-canonical if the canonical class is pseudo-ample. Results For a non-singular projective variety, a result of Kodaira states that this is equivalent to a divisor in the class being the sum of an ample divisor and an effective divisor. See also * Bombieri–Lang conjecture References * {{cite book , first=Serge , last=Lang , authorlink=Serge Lang , title=Survey of Diophantine Geometry , publisher=Springer-Verlag Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in ... , year=1997 , isbn=3-540-61223-8 Algebraic varieties ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rational Number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rational numbers, also referred to as "the rationals", the field of rationals or the field of rational numbers is usually denoted by boldface , or blackboard bold \mathbb. A rational number is a real number. The real numbers that are rational are those whose decimal expansion either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite sequence of digits over and over (example: ). This statement is true not only in base 10, but also in every other integer base, such as the binary and hexadecimal ones (see ). A real number that is not rational is called irrational. Irrational numbers include , , , and . Since the set of rational numbers is countable, and the set of real numbers is uncountable ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Height Zeta Function
In mathematics, the height zeta function of an algebraic variety or more generally a subset of a variety encodes the distribution of points of given height. Definition If ''S'' is a set with height function ''H'', such that there are only finitely many elements of bounded height, define a ''counting function'' :N(S,H,B) = \#\ . and a ''zeta function'' : Z(S,H;s) = \sum_ H(x)^ . Properties If ''Z'' has abscissa of convergence β and there is a constant ''c'' such that ''N'' has rate of growth : N \sim c B^a (\log B)^ then a version of the Wiener–Ikehara theorem holds: ''Z'' has a ''t''-fold pole at ''s'' = β with residue ''c''.''a''.Γ(''t''). The abscissa of convergence has similar formal properties to the Nevanlinna invariant and it is conjectured that they are essentially the same. More precisely, Batyrev–Manin conjectured the following. Let ''X'' be a projective variety over a number field ''K'' with ample divisor ''D'' giving rise to an embedding and height func ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Graduate Texts In Mathematics
Graduate Texts in Mathematics (GTM) (ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standard size (with variable numbers of pages). The GTM series is easily identified by a white band at the top of the book. The books in this series tend to be written at a more advanced level than the similar Undergraduate Texts in Mathematics series, although there is a fair amount of overlap between the two series in terms of material covered and difficulty level. List of books #''Introduction to Axiomatic Set Theory'', Gaisi Takeuti, Wilson M. Zaring (1982, 2nd ed., ) #''Measure and Category – A Survey of the Analogies between Topological and Measure Spaces'', John C. Oxtoby (1980, 2nd ed., ) #''Topological Vector Spaces'', H. H. Schaefer, M. P. Wolff (1999, 2nd ed., ) #''A Course in Homological Algebra'', Peter Hilton, Urs Stammbac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]