NESSI
The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) is a ground-based near-infrared spectrographic system specifically designed to study the atmospheres of exoplanets. The NESSI instrument was mounted in 2014 on a 2.4 meter telescope at the Magdalena Ridge Observatory in Socorro County, New Mexico, USA, achieving first light on 7 April 2014. Overview NESSI, a $3.5 million instrument, is the first purpose-built device for the analysis of exoplanet atmospheres, and is expected to have a powerful impact on the field of exoplanet characterization. The Principal Investigator is Michelle Creech-Eakman at the New Mexico Institute of Mining and Technology, working with seven co-investigators from New Mexico Tech, Magdalena Ridge Observatory, and NASA JPL. It is partly funded by NASA's Experimental Program to Stimulate Competitive Research, in partnership with the New Mexico Institute of Mining and Technology. The NESSI spectroscope was mounted on the institute's 2.4 meter t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Magdalena Ridge Observatory
The Magdalena Ridge Observatory (MRO) is an astronomical observatory in Socorro County, New Mexico, about 32 kilometers (20 mi) west of the town of Socorro. The observatory is located in the Magdalena Mountains near the summit of South Baldy Mountain, adjacent to the Langmuir Laboratory for Atmospheric Research. Currently operational at the site (since 2008) is a 2.4-meter fast-tracking optical telescope, and under construction is a ten-element optical interferometer. The MRO Interferometer is an international scientific collaboration between New Mexico Institute of Mining and Technology (New Mexico Tech – NMT) and the Cavendish Astrophysics Group of University of Cambridge. The project is principally funded by the United States Naval Research Laboratory (NRL), which also supports the Navy Optical Interferometer near Flagstaff, Arizona. NRL is part of the Office of Naval Research. New Mexico State University, New Mexico Highlands University, the University of Puerto ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Exoplanet Search Projects
The following is a list of exoplanet search projects. Ground-based search projects Space missions Past and current Planned Proposed * EXCEDE * FINESSE * Origins * HabEx * LUVOIR * New Worlds Mission * PEGASE Canceled * Darwin * EChO * Eddington * Space Interferometry Mission * Terrestrial Planet Finder The Terrestrial Planet Finder (TPF) was a proposed project by NASA to construct a system of space telescopes for detecting extrasolar terrestrial planets. TPF was postponed several times and finally cancelled in 2011. There were two telescope ... References {{Exoplanet, state=uncollapsed Exoplanetology Search projects ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Near-infrared
Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of Light, visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around 1 millimeter (300 GHz) to the nominal red edge of the visible spectrum, around 700 nanometers (430 Terahertz (unit), THz). Longer IR wavelengths (30 μm-100 μm) are sometimes included as part of the terahertz radiation range. Almost all black-body radiation from objects near room temperature is at infrared wavelengths. As a form of electromagnetic radiation, IR propagates energy and momentum, exerts radiation pressure, and has properties corresponding to Wave–particle duality, both those of a wave and of a Subatomic particle, particle, the photon. It was long known that fires emit invisible heat; in 1681 the pioneering experimenter Edme Mariotte showed that glass, though transparent to sunlight, obstructed rad ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gas Giant
A gas giant is a giant planet composed mainly of hydrogen and helium. Gas giants are also called failed stars because they contain the same basic elements as a star. Jupiter and Saturn are the gas giants of the Solar System. The term "gas giant" was originally synonymous with "giant planet". However, in the 1990s, it became known that Uranus and Neptune are really a distinct class of giant planets, being composed mainly of heavier volatile substances (which are referred to as "ices"). For this reason, Uranus and Neptune are now often classified in the separate category of ice giants. Jupiter and Saturn consist mostly of hydrogen and helium, with heavier elements making up between 3 and 13 percent of their mass.The Interior of Jupiter, Guillot et al., in ''Jupiter: The Planet, Satellites and Magnetosphere'', Bagenal et al., editors, Cambridge University Press, 2004 They are thought to consist of an outer layer of compressed molecular hydrogen surrounding a layer of liquid metallic ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
List Of Extrasolar Planets
These are lists of exoplanets. Most of these were discovered by the Kepler space telescope. There are an additional 2,054 potential exoplanets from Kepler's first mission yet to be confirmed, as well as 978 from its " Second Light" mission and 4,081 from the Transiting Exoplanet Survey Satellite (TESS) mission. For yearly lists on physical, orbital and other properties, as well as on discovery circumstances and other aspects, ''see ''. Nomenclature Methods of detection Specific exoplanet lists Lists of exoplanets *List of directly imaged exoplanets *List of exoplanets discovered before 2000 () *List of exoplanets discovered between 2000–2009 () *List of exoplanets discovered in 2010 () * List of exoplanets discovered in 2011 () *List of exoplanets discovered in 2012 () *List of exoplanets discovered in 2013 () * List of exoplanets discovered in 2014 () * List of exoplanets discovered in 2015 () * List of exoplanets discovered in 2016 () * List of exoplanets discovere ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
HARPS Spectrograph
The High Accuracy Radial Velocity Planet Searcher (HARPS) is a high-precision echelle planet-finding spectrograph installed in 2002 on the ESO's 3.6m telescope at La Silla Observatory in Chile. The first light was achieved in February 2003. HARPS has discovered over 130 exoplanets to date, with the first one in 2004, making it the most successful planet finder behind the Kepler space observatory. It is a second-generation radial-velocity spectrograph, based on experience with the ELODIE and CORALIE instruments. Characteristics The HARPS can attain a precision of 0.97 m/s (3.5 km/h), making it one of only two instruments worldwide with such accuracy. This is due to a design in which the target star and a reference spectrum from a thorium lamp are observed simultaneously using two identical optic fibre feeds, and to careful attention to mechanical stability: the instrument sits in a vacuum vessel which is temperature-controlled to within 0.01 kelvins. The precision ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spectrometer
A spectrometer () is a scientific instrument used to separate and measure spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomenon where the spectral components are somehow mixed. In visible light a spectrometer can separate white light and measure individual narrow bands of color, called a spectrum. A mass spectrometer measures the spectrum of the masses of the atoms or molecules present in a gas. The first spectrometers were used to split light into an array of separate colors. Spectrometers were developed in early studies of physics, astronomy, and chemistry. The capability of spectroscopy to determine chemical composition drove its advancement and continues to be one of its primary uses. Spectrometers are used in astronomy to analyze the chemical composition of stars and planets, and spectrometers gather data on the origin of the universe. Examples of spectrometers are ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Astronomical Spectroscopy
Astronomical spectroscopy is the study of astronomy using the techniques of spectroscopy to measure the spectrum of electromagnetic radiation, including visible light, ultraviolet, X-ray, infrared and radio waves that radiate from stars and other celestial objects. A stellar spectrum can reveal many properties of stars, such as their chemical composition, temperature, density, mass, distance and luminosity. Spectroscopy can show the velocity of motion towards or away from the observer by measuring the Doppler shift. Spectroscopy is also used to study the physical properties of many other types of celestial objects such as planets, nebulae, galaxies, and active galactic nuclei. Background Astronomical spectroscopy is used to measure three major bands of radiation in the electromagnetic spectrum: visible light, radio waves, and X-rays. While all spectroscopy looks at specific bands of the spectrum, different methods are required to acquire the signal depending on the frequenc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Electromagnetic Spectrum
The electromagnetic spectrum is the range of frequencies (the spectrum) of electromagnetic radiation and their respective wavelengths and photon energies. The electromagnetic spectrum covers electromagnetic waves with frequencies ranging from below one hertz to above 1025 hertz, corresponding to wavelengths from thousands of kilometers down to a fraction of the size of an atomic nucleus. This frequency range is divided into separate bands, and the electromagnetic waves within each frequency band are called by different names; beginning at the low frequency (long wavelength) end of the spectrum these are: radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, and gamma rays at the high-frequency (short wavelength) end. The electromagnetic waves in each of these bands have different characteristics, such as how they are produced, how they interact with matter, and their practical applications. There is no known limit for long and short wavelengths. Extreme ultr ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Near-infrared Spectroscopy
Near-infrared spectroscopy (NIRS) is a spectroscopic method that uses the near-infrared region of the electromagnetic spectrum (from 780 nm to 2500 nm). Typical applications include medical and physiological diagnostics and research including blood sugar, pulse oximetry, functional neuroimaging, sports medicine, elite sports training, ergonomics, rehabilitation, neonatal research, brain computer interface, urology (bladder contraction), and neurology (neurovascular coupling). There are also applications in other areas as well such as pharmaceutical, food and agrochemical quality control, atmospheric chemistry, combustion research and astronomy. Theory Near-infrared spectroscopy is based on molecular overtone and combination vibrations. Such transitions are forbidden by the selection rules of quantum mechanics. As a result, the molar absorptivity in the near-IR region is typically quite small. (NIR absorption bands are typically 10–100 times weaker than the correspond ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Exoplanet
An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. There are many methods of detecting exoplanets. Transit photometry and Doppler spectroscopy have found the most, but these methods suffer from a clear observational bias favoring the detection of planets near the star; thus, 85% of the exoplanets detected are inside the tidal locking zone. In several cases, multiple planets have been observed around a star. About 1 in 5 Sun-like starsFor the purpose of this 1 in 5 statistic, "Sun-like" means G-type star. Data for Sun-like stars was not available so this statistic is an extrapolation from data about K-type stars. have an "Earth-sized"For the purpose of this 1 in 5 statistic, Earth-sized means 1–2 Earth radii. planet in the habitable zone. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
America COMPETES Act
The America Creating Opportunities to Meaningfully Promote Excellence in Technology, Education, and Science Act of 2007, or America COMPETES Act,History of the America COMPETES Act () was authored by , and became law on August 9, 2007, when it was signed by President . This was an act " invest in innovation through research and development, and to improve the competitiveness of the United States". On May 29, 2010, the U.S. House passed a measure to reauthorize the America COMPETES ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |