Mumford–Tate Group
   HOME
*





Mumford–Tate Group
In algebraic geometry, the Mumford–Tate group (or Hodge group) ''MT''(''F'') constructed from a Hodge structure ''F'' is a certain algebraic group ''G''. When ''F'' is given by a rational representation of an algebraic torus, the definition of ''G'' is as the Zariski closure of the image in the representation of the circle group, over the rational numbers. introduced Mumford–Tate groups over the complex numbers under the name of Hodge groups. introduced the ''p''-adic analogue of Mumford's construction for Hodge–Tate modules, using the work of on p-divisible groups, and named them Mumford–Tate groups. Formulation The algebraic torus ''T'' used to describe Hodge structures has a concrete matrix representation, as the 2×2 invertible matrices of the shape that is given by the action of ''a''+''bi'' on the basis of the complex numbers C over R: :\begin a & b \\ -b & a \end. The circle group inside this group of matrices is the unitary group ''U''(1). Hodg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Algebraic Geometry
Algebraic geometry is a branch of mathematics, classically studying zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are: plane algebraic curves, which include lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. A point of the plane belongs to an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of the points of special interest like the singular points, the inflection points and the points at infinity. More advanced questions involve the topology of the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Galois Representation
In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring in representation theory, but can also be used as a synonym for ''G''-module. The study of Galois modules for extensions of local or global fields and their group cohomology is an important tool in number theory. Examples *Given a field ''K'', the multiplicative group (''Ks'')× of a separable closure of ''K'' is a Galois module for the absolute Galois group. Its second cohomology group is isomorphic to the Brauer group of ''K'' (by Hilbert's theorem 90, its first cohomology group is zero). *If ''X'' is a smooth proper scheme over a field ''K'' then the ℓ-adic cohomology groups of its geometric fibre are Galois modules for the absolute Galois group of ''K''. Ramification theory Let ''K'' be a valued field (with valuation denoted ''v'') ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Phillip Griffiths
Phillip Augustus Griffiths IV (born October 18, 1938) is an American mathematician, known for his work in the field of geometry, and in particular for the complex manifold approach to algebraic geometry. He was a major developer in particular of the theory of variation of Hodge structure in Hodge theory and moduli theory. He also worked on partial differential equations, coauthored with Shiing-Shen Chern, Robert Bryant and Robert Gardner on Exterior Differential Systems. Professional career He received his BS from Wake Forest College in 1959 and his PhD from Princeton University in 1962 after completing a doctoral dissertation, titled "On certain homogeneous complex manifolds", under the supervision of Donald Spencer. Afterwards, he held positions at University of California, Berkeley (1962–1967) and Princeton University (1967–1972). Griffiths was a professor of mathematics at Harvard University from 1972 to 1983. He was then a Provost and James B. Duke Professor o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second largest academic publisher with 65 staff in 1872.Chronology
". Springer Science+Business Media.
In 1964, Springer expanded its business internationally, o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe was the first president and Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance, due to concerns about competing with the American Journal of Mathematics. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influential in in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pierre Deligne
Pierre René, Viscount Deligne (; born 3 October 1944) is a Belgian mathematician. He is best known for work on the Weil conjectures, leading to a complete proof in 1973. He is the winner of the 2013 Abel Prize, 2008 Wolf Prize, 1988 Crafoord Prize, and 1978 Fields Medal. Early life and education Deligne was born in Etterbeek, attended school at Athénée Adolphe Max and studied at the Université libre de Bruxelles (ULB), writing a dissertation titled ''Théorème de Lefschetz et critères de dégénérescence de suites spectrales'' (Theorem of Lefschetz and criteria of degeneration of spectral sequences). He completed his doctorate at the University of Paris-Sud in Orsay 1972 under the supervision of Alexander Grothendieck, with a thesis titled ''Théorie de Hodge''. Career Starting in 1972, Deligne worked with Grothendieck at the Institut des Hautes Études Scientifiques (IHÉS) near Paris, initially on the generalization within scheme theory of Zariski's main theorem. In 196 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transcendence Degree
In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ''L'' over ''K''. A subset ''S'' of ''L'' is a transcendence basis of ''L'' / ''K'' if it is algebraically independent over ''K'' and if furthermore ''L'' is an algebraic extension of the field ''K''(''S'') (the field obtained by adjoining the elements of ''S'' to ''K''). One can show that every field extension has a transcendence basis, and that all transcendence bases have the same cardinality; this cardinality is equal to the transcendence degree of the extension and is denoted trdeg''K'' ''L'' or trdeg(''L'' / ''K''). If no field ''K'' is specified, the transcendence degree of a field ''L'' is its degree relative to the prime field of the same characteristic, i.e., the rational numbers field Q if ''L'' is of characteristic 0 and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Period Matrix
In mathematics, in the field of algebraic geometry, the period mapping relates families of Kähler manifolds to families of Hodge structures. Ehresmann's theorem Let be a holomorphic submersive morphism. For a point ''b'' of ''B'', we denote the fiber of ''f'' over ''b'' by ''X''''b''. Fix a point 0 in ''B''. Ehresmann's theorem guarantees that there is a small open neighborhood ''U'' around 0 in which ''f'' becomes a fiber bundle. That is, is diffeomorphic to . In particular, the composite map :X_b \hookrightarrow f^(U) \cong X_0 \times U \twoheadrightarrow X_0 is a diffeomorphism. This diffeomorphism is not unique because it depends on the choice of trivialization. The trivialization is constructed from smooth paths in ''U'', and it can be shown that the homotopy class of the diffeomorphism depends only on the choice of a homotopy class of paths from ''b'' to 0. In particular, if ''U'' is contractible, there is a well-defined diffeomorphism up to homotopy. The diffe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Sato–Tate Conjecture
In mathematics, the Sato–Tate conjecture is a statistical statement about the family of elliptic curves ''Ep'' obtained from an elliptic curve ''E'' over the rational numbers by reduction modulo almost all prime numbers ''p''. Mikio Sato and John Tate independently posed the conjecture around 1960. If ''Np'' denotes the number of points on the elliptic curve ''Ep'' defined over the finite field with ''p'' elements, the conjecture gives an answer to the distribution of the second-order term for ''Np''. By Hasse's theorem on elliptic curves, :N_p/p = 1 + \mathrm(1/\!\sqrt)\ as p\to\infty, and the point of the conjecture is to predict how the O-term varies. The original conjecture and its generalization to all totally real fields was proved by Laurent Clozel, Michael Harris, Nicholas Shepherd-Barron, and Richard Taylor under mild assumptions in 2008, and completed by Thomas Barnet-Lamb, David Geraghty, Harris, and Taylor in 2011. Several generalizations to other algebraic v ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Motivic Galois Group
In algebraic geometry, motives (or sometimes motifs, following French usage) is a theory proposed by Alexander Grothendieck in the 1960s to unify the vast array of similarly behaved cohomology theories such as singular cohomology, de Rham cohomology, etale cohomology, and crystalline cohomology. Philosophically, a "motif" is the "cohomology essence" of a variety. In the formulation of Grothendieck for smooth projective varieties, a motive is a triple (X, p, m), where ''X'' is a smooth projective variety, p: X \vdash X is an idempotent correspondence, and ''m'' an integer, however, such a triple contains almost no information outside the context of Grothendieck's category of pure motives, where a morphism from (X, p, m) to (Y, q, n) is given by a correspondence of degree n-m. A more object-focused approach is taken by Pierre Deligne in ''Le Groupe Fondamental de la Droite Projective Moins Trois Points''. In that article, a motive is a "system of realisations" – that is, a t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ken Ribet
Kenneth Alan Ribet (; born June 28, 1948) is an American mathematician working in algebraic number theory and algebraic geometry. He is known for the Herbrand–Ribet theorem and Ribet's theorem, which were key ingredients in the proof of Fermat's Last Theorem, as well as for his service as President of the American Mathematical Society from 2017 to 2019. He is currently a professor of mathematics at the University of California, Berkeley. Early life and education Kenneth Ribet was born in Brooklyn, New York to parents David Ribet and Pearl Ribet, both Jewish, on June 28, 1948. As a student at Far Rockaway High School, Ribet was on a competitive mathematics team, but his first field of study was chemistry. Ribet earned his bachelor's degree and master's degree from Brown University in 1969. In 1973, Ribet received his Ph.D. from Harvard University under the supervision of John Tate. Career After receiving his doctoral degree, Ribet taught at Princeton University for three years ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lie Algebra
In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow \mathfrak g, that satisfies the Jacobi identity. The Lie bracket of two vectors x and y is denoted [x,y]. The vector space \mathfrak g together with this operation is a non-associative algebra, meaning that the Lie bracket is not necessarily associative property, associative. Lie algebras are closely related to Lie groups, which are group (mathematics), groups that are also smooth manifolds: any Lie group gives rise to a Lie algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional Lie algebra over real or complex numbers, there is a corresponding connected space, connected Lie group unique up to finite coverings (Lie's third theorem). This Lie group–Lie algebra correspondence, correspondence allows one ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]