Multi-frequency Time-division Multiple Access
   HOME
*





Multi-frequency Time-division Multiple Access
MF-TDMA ("Multi-frequency time-division multiple access") is a technology for dynamically sharing bandwidth resources in an over-the-air two-way communications network. See also * Channel access method * Time-division multiplex Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fracti ... (TDM) Radio resource management Media access control {{Telecommunications-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Channel Access Method
In telecommunications and computer networks, a channel access method or multiple access method allows more than two terminals connected to the same transmission medium to transmit over it and to share its capacity. Examples of shared physical media are wireless networks, bus networks, ring networks and point-to-point links operating in half-duplex mode. A channel access method is based on multiplexing, that allows several data streams or signals to share the same communication channel or transmission medium. In this context, multiplexing is provided by the physical layer. A channel access method may also be a part of the multiple access protocol and control mechanism, also known as medium access control (MAC). Medium access control deals with issues such as addressing, assigning multiplex channels to different users and avoiding collisions. Media access control is a sub-layer in the data link layer of the OSI model and a component of the link layer of the TCP/IP model. Fundame ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Time-division Multiplex
Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. This method transmits two or more digital signals or analog signals over a common channel. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century. History Time-division multiplexing was first developed for applications in telegraphy to route multiple transmissions simultaneously over a single transmission line. In the 1870s, Émile Baudot developed a time-multiplexing system of multiple Hughes telegraph machines. In 1944, the British ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Radio Resource Management
Radio resource management (RRM) is the system level management of co-channel interference, radio resources, and other radio transmission characteristics in wireless communication systems, for example cellular networks, wireless local area networks, wireless sensor systems, and radio broadcasting networks. RRM involves strategies and algorithms for controlling parameters such as transmit power, user allocation, beamforming, data rates, handover criteria, modulation scheme, error coding scheme, etc. The objective is to utilize the limited radio-frequency spectrum resources and radio network infrastructure as efficiently as possible. RRM concerns multi-user and multi-cell network capacity issues, rather than the point-to-point channel capacity. Traditional telecommunications research and education often dwell on channel coding and source coding with a single user in mind, but when several users and adjacent base stations share the same frequency channel it may not be possible to achie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]