Moyal Bracket
   HOME
*





Moyal Bracket
In physics, the Moyal bracket is the suitably normalized antisymmetrization of the phase-space star product. The Moyal bracket was developed in about 1940 by José Enrique Moyal, but Moyal only succeeded in publishing his work in 1949 after a lengthy dispute with Paul Dirac. In the meantime this idea was independently introduced in 1946 by Hip Groenewold. Overview The Moyal bracket is a way of describing the commutator of observables in the phase space formulation of quantum mechanics when these observables are described as functions on phase space. It relies on schemes for identifying functions on phase space with quantum observables, the most famous of these schemes being the Wigner–Weyl transform. It underlies Moyal’s dynamical equation, an equivalent formulation of Heisenberg’s quantum equation of motion, thereby providing the quantum generalization of Hamilton’s equations. Mathematically, it is a deformation of the phase-space Poisson bracket (essential ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of physic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Group Contraction
In theoretical physics, Eugene Wigner and Erdal İnönü have discussed the possibility to obtain from a given Lie group a different (non-isomorphic) Lie group by a group contraction with respect to a continuous subgroup of it. That amounts to a limiting operation on a parameter of the Lie algebra, altering the structure constants of this Lie algebra in a nontrivial singular manner, under suitable circumstances. For example, the Lie algebra of the 3D rotation group , , etc., may be rewritten by a change of variables , , , as : . The contraction limit trivializes the first commutator and thus yields the non-isomorphic algebra of the plane Euclidean group, . (This is isomorphic to the cylindrical group, describing motions of a point on the surface of a cylinder. It is the little group, or stabilizer subgroup, of null four-vectors in Minkowski space.) Specifically, the translation generators , now generate the Abelian normal subgroup of (cf. Group extension), the parabol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Basil Hiley
Basil J. Hiley (born 1935), is a British people, British Quantum mechanics, quantum physicist and professor emeritus of the University of London. Long-time colleague of David Bohm, Hiley is known for his work with Bohm on implicate orders and for his work on algebraic descriptions of quantum physics in terms of underlying symplectic and orthogonal Clifford algebras. Hiley co-authored the book ''The Undivided Universe'' with David Bohm, which is considered the main reference for Bohm's interpretation of quantum theory. The work of Bohm and Hiley has been characterized as primarily addressing the question "whether we can have an adequate conception of the reality of a quantum system, be this causal or be it stochastic or be it of any other nature" and meeting the scientific challenge of providing a mathematical description of quantum systems that matches the idea of an ''implicate order''. Education and career Basil Hiley was born 1935 in Burma, where his father worked for the mi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hamilton–Jacobi Equation
In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics. The Hamilton–Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely. The Hamilton–Jacobi equation is also the only formulation of mechanics in which the motion of a particle can be represented as a wave. In this sense, it fulfilled a long-held goal of theoretical physics (dating at least to Johann Bernoulli in the eighteenth century) of finding an analogy between the propagation of light and the motion of a particle. The wave equation followed by mechanical systems is similar to, but not identical with, Schrödinger's equation, as described below; for this reason, the Ha ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Liouville's Theorem (Hamiltonian)
In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that ''the phase-space distribution function is constant along the trajectories of the system''—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability. There are related mathematical results in symplectic topology and ergodic theory; systems obeying Liouville's theorem are examples of incompressible dynamical systems. There are extensions of Liouville's theorem to stochastic systems. Liouville equations The Liouville equation describes the time evolution of the ''phase space distribution function''. Although the equation is usually referred to as the "Liouville equation", Josiah Willard Gibbs was the first to recognize the impor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Classical Limit
The classical limit or correspondence limit is the ability of a physical theory to approximate or "recover" classical mechanics when considered over special values of its parameters. The classical limit is used with physical theories that predict non-classical behavior. Quantum theory A heuristic postulate called the correspondence principle was introduced to quantum theory by Niels Bohr: in effect it states that some kind of continuity argument should apply to the classical limit of quantum systems as the value of the Planck constant normalized by the action of these systems becomes very small. Often, this is approached through "quasi-classical" techniques (cf. WKB approximation). More rigorously, the mathematical operation involved in classical limits is a group contraction, approximating physical systems where the relevant action is much larger than the reduced Planck constant , so the "deformation parameter" / can be effectively taken to be zero (cf. Weyl quantization.) Thus ty ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Anticommutator
In mathematics, the commutator gives an indication of the extent to which a certain binary operation fails to be commutative. There are different definitions used in group theory and ring theory. Group theory The commutator of two elements, and , of a group , is the element : . This element is equal to the group's identity if and only if and commute (from the definition , being equal to the identity if and only if ). The set of all commutators of a group is not in general closed under the group operation, but the subgroup of ''G'' generated by all commutators is closed and is called the ''derived group'' or the ''commutator subgroup'' of ''G''. Commutators are used to define nilpotent and solvable groups and the largest abelian quotient group. The definition of the commutator above is used throughout this article, but many other group theorists define the commutator as :. Identities (group theory) Commutator identities are an important tool in group theory. The expr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirac Bracket
The Dirac bracket is a generalization of the Poisson bracket developed by Paul Dirac to treat classical systems with second class constraints in Hamiltonian mechanics, and to thus allow them to undergo canonical quantization. It is an important part of Dirac's development of Hamiltonian mechanics to elegantly handle more general Lagrangians; specifically, when constraints are at hand, so that the number of apparent variables exceeds that of dynamical ones. More abstractly, the two-form implied from the Dirac bracket is the restriction of the symplectic form to the constraint surface in phase space. This article assumes familiarity with the standard Lagrangian and Hamiltonian formalisms, and their connection to canonical quantization. Details of Dirac's modified Hamiltonian formalism are also summarized to put the Dirac bracket in context. Inadequacy of the standard Hamiltonian procedure The standard development of Hamiltonian mechanics is inadequate in several specific si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Second Class Constraints
A first class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space (the surface implicitly defined by the simultaneous vanishing of all the constraints). To calculate the first class constraint, one assumes that there are no second class constraints, or that they have been calculated previously, and their Dirac brackets generated. First and second class constraints were introduced by as a way of quantizing mechanical systems such as gauge theories where the symplectic form is degenerate. The terminology of first and second class constraints is confusingly similar to that of primary and secondary constraints, reflecting the manner in which these are generated. These divisions are independent: both first and second class constraints can be either primary or secondary, so this gives altogether four different classes of constraints. Poisson brackets Consider a Po ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Identity
In mathematics, the Jacobi identity is a property of a binary operation that describes how the order of evaluation, the placement of parentheses in a multiple product, affects the result of the operation. By contrast, for operations with the associative property, any order of evaluation gives the same result (parentheses in a multiple product are not needed). The identity is named after the German mathematician Carl Gustav Jacob Jacobi. The cross product a\times b and the Lie bracket operation ,b/math> both satisfy the Jacobi identity. In analytical mechanics, the Jacobi identity is satisfied by the Poisson brackets. In quantum mechanics, it is satisfied by operator commutators on a Hilbert space and equivalently in the phase space formulation of quantum mechanics by the Moyal bracket. Definition Let + and \times be two binary operations, and let 0 be the neutral element for +. The is :x \times (y \times z) \ +\ y \times (z \times x) \ +\ z \times (x \times y)\ =\ 0. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Thomas Curtright
Thomas L. Curtright (born 1948) is a theoretical physicist at the University of Miami. He did undergraduate work in physics at the University of Missouri (B.S., M.S., 1970), and graduate work at Caltech (Ph.D., 1977) under the supervision of Richard Feynman. He has made numerous influential contributions in particle and mathematical physics, notably in supercurrent anomalies, higher-spin fields (Curtright field), quantum Liouville theory, geometrostatic sigma models, quantum algebras, and deformation quantization. Curtright is a Fellow of the American Physical Society, a co-recipient (with Charles Thorn) of the SESAPS Jesse Beams Award, a University of Miami Cooper Fellow, and a recipient of the Distinguished Faculty Scholar Award from the University's Senate. He is also the recipient of Distinguished Alumni Awards from the Department of Physics and Astronomy (2021) and from the College of Arts and Science (2022), University of Missouri at Columbia. He has co-edited ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


David Fairlie
David B. Fairlie (born in South Queensferry, Scotland, 1935) is a British mathematician and theoretical physicist, Professor Emeritus at the University of Durham (UK). He was educated in mathematical physics at the University of Edinburgh (BSc 1957), and he earned a PhD at the University of Cambridge in 1960, under the supervision of John Polkinghorne. After postdoctoral training at Princeton University and Cambridge, he was lecturer in St. Andrews (1962–64) and at Durham University (1964), retiring as Professor (2000). He has made numerous influential contributions in particle and mathematical physics, notably in the early formulation of string theory, as well as the determination of the weak mixing angle in extra dimensions, infinite-dimensional Lie algebras, classical solutions of gauge theories, higher-dimensional gauge theories, and deformation quantization. He has co-authored several volumes, notablyThomas L Curtright, David B Fairlie, Cosmas K Zachos, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]