Moser Spindle
   HOME
*



picture info

Moser Spindle
In graph theory, a branch of mathematics, the Moser spindle (also called the Mosers' spindle or Moser graph) is an undirected graph, named after mathematicians Leo Moser and his brother William, with seven vertices and eleven edges. It is a unit distance graph requiring four colors in any graph coloring, and its existence can be used to prove that the chromatic number of the plane is at least four.. The Moser spindle has also been called the Hajós graph after György Hajós, as it can be viewed as an instance of the Hajós construction. However, the name "Hajós graph" has also been applied to a different graph, in the form of a triangle inscribed within a hexagon. Construction As a unit distance graph, the Moser spindle is formed by two rhombi with 60 and 120 degree angles, so that the sides and short diagonals of the rhombi form equilateral triangles. The two rhombi are placed in the plane, sharing one of their acute-angled vertices, in such a way that the remaining two acute ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Moser Spindle Pseudotriangulation
Moser may refer to: * Moser (surname) * An individual who commits the act of Mesirah in Judaism Places * Moser Glacier, a glacier on the west coast of Graham Land, Antarctica * Moser River, Nova Scotia, Canada * Moser Bay Seaplane Base, a public-use seaplane base in Moser Bay, Alaska * Moser Channel, a passage spanned by the Seven Mile Bridge in the Florida Keys * Moser Farm, a historic farm near Kirschnerville, New York Companies * Moser Baer, a technology company based in New Delhi, India * Moser Cicli, an Italian bicycle manufacturer * Moser Glass, a Czech-based glass manufacturer * Moser's Rides, an Italian amusement ride manufacturer See also * Kolmogorov–Arnold–Moser theorem, mathematical theorem of dynamical systems * Moser Gender Planning Framework, a tool for gender analysis in development planning * Moser number, the number represented by "2 in a megagon", where a "megagon" is a polygon with "mega" sides * Moser polygon notation, a means of expressing cert ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Utility Graph
As a topic of economics, utility is used to model worth or value. Its usage has evolved significantly over time. The term was introduced initially as a measure of pleasure or happiness as part of the theory of utilitarianism by moral philosophers such as Jeremy Bentham and John Stuart Mill. The term has been adapted and reapplied within neoclassical economics, which dominates modern economic theory, as a utility function that represents a single consumer's preference ordering over a choice set but is not comparable across consumers. This concept of utility is personal and based on choice rather than on pleasure received, and so is specified more rigorously than the original concept but makes it less useful (and controversial) for ethical decisions. Utility function Consider a set of alternatives among which a person can make a preference ordering. The utility obtained from these alternatives is an unknown function of the utilities obtained from each alternative, not the sum of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Communications Of The ACM
''Communications of the ACM'' is the monthly journal of the Association for Computing Machinery (ACM). It was established in 1958, with Saul Rosen as its first managing editor. It is sent to all ACM members. Articles are intended for readers with backgrounds in all areas of computer science and information systems. The focus is on the practical implications of advances in information technology and associated management issues; ACM also publishes a variety of more theoretical journals. The magazine straddles the boundary of a science magazine, trade magazine, and a scientific journal. While the content is subject to peer review, the articles published are often summaries of research that may also be published elsewhere. Material published must be accessible and relevant to a broad readership. From 1960 onward, ''CACM'' also published algorithms, expressed in ALGOL. The collection of algorithms later became known as the Collected Algorithms of the ACM. See also * ''Journal of the A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle-free Graph
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs. By Turán's theorem, the ''n''-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph in which the numbers of vertices on each side of the bipartition are as equal as possible. Triangle finding problem The triangle finding problem is the problem of determining whether a graph is triangle-free or not. When the graph does contain a triangle, algorithms are often required to output three vertices which form a triangle in the graph. It is possible to test whether a graph with edges is triangle-free in time . Another approach is to find the trace of , where is the adjacency matrix of the graph. The trace is zero if and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Computational Geometry (journal)
''Computational Geometry'', also known as ''Computational Geometry: Theory and Applications'', is a peer-reviewed mathematics journal for research in theoretical and applied computational geometry, its applications, techniques, and design and analysis of geometric algorithms. All aspects of computational geometry are covered, including the numerical, graph theoretical and combinatorial aspects, as well as fundamental problems in various areas of application of computational geometry: in computer graphics, pattern recognition, image processing, robotics, electronic design automation, CAD/CAM, and geographical information systems. The journal was founded in 1991 by Jörg-Rüdiger Sack and Jorge Urrutia.. It is indexed by ''Mathematical Reviews'', Zentralblatt MATH, Science Citation Index, and Current Contents ''Current Contents'' is a rapid alerting service database from Clarivate Analytics, formerly the Institute for Scientific Information and Thomson Reuters. It is publis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pseudotriangle
In Euclidean plane geometry, a pseudotriangle (''pseudo-triangle'') is the simply connected subset of the plane that lies between any three mutually tangent convex sets. A pseudotriangulation (''pseudo-triangulations'') is a partition of a region of the plane into pseudotriangles, and a pointed pseudotriangulation is a pseudotriangulation in which at each vertex the incident edges span an angle of less than π. Although the words "pseudotriangle" and "pseudotriangulation" have been used with various meanings in mathematics for much longer, the terms as used here were introduced in 1993 by Michel Pocchiola and Gert Vegter in connection with the computation of visibility relations and bitangents among convex obstacles in the plane. Pointed pseudotriangulations were first considered by Ileana Streinu (2000, 2005) as part of her solution to the carpenter's ruler problem, a proof that any simple polygonal path in the plane can be straightened out by a sequence of continuous motions. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Convex Hull
In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space, or equivalently as the set of all convex combinations of points in the subset. For a bounded subset of the plane, the convex hull may be visualized as the shape enclosed by a rubber band stretched around the subset. Convex hulls of open sets are open, and convex hulls of compact sets are compact. Every compact convex set is the convex hull of its extreme points. The convex hull operator is an example of a closure operator, and every antimatroid can be represented by applying this closure operator to finite sets of points. The algorithmic problems of finding the convex hull of a finite set of points in the plane or other low-dimensional Euclidean spaces, and its dual problem of intersecting half-spaces, are fundamental problems of com ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rigid System
In discrete geometry and mechanics, structural rigidity is a combinatorics, combinatorial theory for predicting the flexibility of ensembles formed by rigid body, rigid bodies connected by flexible Linkage (mechanical), linkages or hinges. Definitions Stiffness, Rigidity is the property of a structure that it does not bend or flex under an applied force. The opposite of rigidity is flexibility. In structural rigidity theory, structures are formed by collections of objects that are themselves rigid bodies, often assumed to take simple geometric forms such as straight rods (line segments), with pairs of objects connected by flexible hinges. A structure is rigid if it cannot flex; that is, if there is no continuous motion of the structure that preserves the shape of its rigid components and the pattern of their connections at the hinges. There are two essentially different kinds of rigidity. Finite or macroscopic rigidity means that the structure will not flex, fold, or bend by a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Matchstick Graph
In geometric graph theory, a branch of mathematics, a matchstick graph is a graph that can be drawn in the plane in such a way that its edges are line segments with length one that do not cross each other. That is, it is a graph that has an embedding which is simultaneously a unit distance graph and a plane graph. For this reason, matchstick graphs have also been called planar unit-distance graphs. Informally, matchstick graphs can be made by placing noncrossing matchsticks on a flat surface, hence the name. Regular matchstick graphs Much of the research on matchstick graphs has concerned regular graphs, in which each vertex has the same number of neighbors. This number is called the degree of the graph. Regular matchstick graphs can have degree 0, 1, 2, 3, or 4. The complete graphs with one, two, and three vertices (a single vertex, a single edge, and a triangle) are all matchstick graphs and are 0-, 1-, and 2-regular respectively. The smallest 3-regular matchstick graph is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Planar Graph
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points. Every graph that can be drawn on a plane can be drawn on the sphere as well, and vice versa, by means of stereographic projection. Plane graphs can be encoded by combinatorial maps or rotation systems. An equivalence class of topologically equivalent drawings on the sphere, usually with additional assumptions such as the absence of isthmuses, is called a pl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Axiom Of Choice
In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection of sets, each containing at least one element, it is possible to construct a new set by arbitrarily choosing one element from each set, even if the collection is infinite. Formally, it states that for every indexed family (S_i)_ of nonempty sets, there exists an indexed set (x_i)_ such that x_i \in S_i for every i \in I. The axiom of choice was formulated in 1904 by Ernst Zermelo in order to formalize his proof of the well-ordering theorem. In many cases, a set arising from choosing elements arbitrarily can be made without invoking the axiom of choice; this is, in particular, the case if the number of sets from which to choose the elements is finite, or if a canonical rule on how to choose the elements is available – some distinguishin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

De Bruijn–Erdős Theorem (graph Theory)
In graph theory, the De Bruijn–Erdős theorem relates graph coloring of an infinite graph to the same problem on its finite subgraphs. It states that, when all finite subgraphs can be colored with c colors, the same is true for the whole graph. The theorem was proved by Nicolaas Govert de Bruijn and Paul Erdős (1951), after whom it is named. The De Bruijn–Erdős theorem has several different proofs, all depending in some way on the axiom of choice. Its applications include extending the four-color theorem and Dilworth's theorem from finite graphs and partially ordered sets to infinite ones, and reducing the Hadwiger–Nelson problem on the chromatic number of the plane to a problem about finite graphs. It may be generalized from finite numbers of colors to sets of colors whose cardinality is a strongly compact cardinal. Definitions and statement An undirected graph is a mathematical object consisting of a set of vertices and a set of edges that link pairs of vertices. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]