Moody Chart
   HOME
*





Moody Chart
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor ''f''''D'', Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe. History In 1944, Lewis Ferry Moody plotted the Darcy–Weisbach friction factor against Reynolds number Re for various values of relative roughness ε / ''D''. This chart became commonly known as the Moody chart or Moody diagram. It adapts the work of Hunter Rouse but uses the more practical choice of coordinates employed by R. J. S. Pigott, whose work was based upon an analysis of some 10,000 experiments from various sources. Measurements of fluid flow in artificially roughened pipes by J. Nikuradse were at the time too recent to include in Pigott's chart. The chart's purpose was to provide a graphical representation of the function of C. F. Colebro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dimensionless Numbers
A dimensionless quantity (also known as a bare quantity, pure quantity, or scalar quantity as well as quantity of dimension one) is a quantity to which no physical dimension is assigned, with a corresponding SI unit of measurement of one (or 1), ISBN 978-92-822-2272-0. which is not explicitly shown. Dimensionless quantities are widely used in many fields, such as mathematics, physics, chemistry, engineering, and economics. Dimensionless quantities are distinct from quantities that have associated dimensions, such as time (measured in seconds). Dimensionless units are dimensionless values that serve as units of measurement for expressing other quantities, such as radians (rad) or steradians (sr) for plane angles and solid angles, respectively. For example, optical extent is defined as having units of metres multiplied by steradians. History Quantities having dimension one, ''dimensionless quantities'', regularly occur in sciences, and are formally treated within the field of d ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Laminar Flow
In fluid dynamics, laminar flow is characterized by fluid particles following smooth paths in layers, with each layer moving smoothly past the adjacent layers with little or no mixing. At low velocities, the fluid tends to flow without lateral mixing, and adjacent layers slide past one another like playing cards. There are no cross-currents perpendicular to the direction of flow, nor eddies or swirls of fluids. In laminar flow, the motion of the particles of the fluid is very orderly with particles close to a solid surface moving in straight lines parallel to that surface. Laminar flow is a flow regime characterized by high momentum diffusion and low momentum convection. When a fluid is flowing through a closed channel such as a pipe or between two flat plates, either of two types of flow may occur depending on the velocity and viscosity of the fluid: laminar flow or turbulent flow. Laminar flow occurs at lower velocities, below a threshold at which the flow becomes turbulent. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fluid Dynamics
In physics and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids— liquids and gases. It has several subdisciplines, including ''aerodynamics'' (the study of air and other gases in motion) and hydrodynamics (the study of liquids in motion). Fluid dynamics has a wide range of applications, including calculating forces and moments on aircraft, determining the mass flow rate of petroleum through pipelines, predicting weather patterns, understanding nebulae in interstellar space and modelling fission weapon detonation. Fluid dynamics offers a systematic structure—which underlies these practical disciplines—that embraces empirical and semi-empirical laws derived from flow measurement and used to solve practical problems. The solution to a fluid dynamics problem typically involves the calculation of various properties of the fluid, such as flow velocity, pressure, density, and temperature, as functions of space and time. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Darcy Friction Factor Formulae
In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as the ''Darcy–Weisbach friction factor'', ''resistance coefficient'' or simply ''friction factor''; by definition it is four times larger than the Fanning friction factor. Notation In this article, the following conventions and definitions are to be understood: * The Reynolds number Re is taken to be Re = ''V'' ''D'' / ν, where ''V'' is the mean velocity of fluid flow, ''D'' is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. * The pipe's relative roughness ε / ''D'', where ε is the pipe's effective roughness height and ''D'' the pipe (inside) diameter. * ''f'' stands for the Darcy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Friction Loss
The term friction loss (or frictional loss) has a number of different meanings, depending on its context. * In fluid flow it is the head loss that occurs in a containment such as a pipe or duct due to the effect of the fluid's viscosity near the surface of the containment. * In mechanical systems such as internal combustion engines, the term refers to the power lost in overcoming the friction between two moving surfaces. * In economics, frictional loss is natural and irrecoverable loss in a transaction or the cost(s) of doing business too small to account for. Contrast with tret in shipping, which made a general allowance for otherwise unaccounted for factors. Engineering Friction loss is a significant engineering concern wherever fluids are made to flow, whether entirely enclosed in a pipe or duct, or with a surface open to the air. * Historically, it is a concern in aqueducts of all kinds, throughout human history. It is also relevant to sewer lines. Systematic study trac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fanning Friction Factor
The Fanning friction factor, named after John Thomas Fanning, is a dimensionless number used as a local parameter in continuum mechanics calculations. It is defined as the ratio between the local shear stress and the local flow kinetic energy density: : f = \frac where: *f is the local Fanning friction factor (dimensionless) *\tau is the local shear stress (unit in \frac or \frac or Pa) *u is the bulk flow velocity (unit in \frac or \frac) *\rho is the density of the fluid (unit in \frac or \frac) In particular the shear stress at the wall can, in turn, be related to the pressure loss by multiplying the wall shear stress by the wall area ( 2 \pi R L for a pipe with circular cross section) and dividing by the cross-sectional flow area ( \pi R^2 for a pipe with circular cross section). Thus \Delta P = f \frac \rho u^2 Fanning friction factor formula This friction factor is one-fourth of the Darcy friction factor, so attention must be paid to note which one of these is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Fanning Equation
Fanning may refer to: * Fanning (bees), a behaviour of worker bees signalling an entrance to a hive * Fanning (firearms), a shooting technique in which one hand holds a revolver and the other hits the hammer repeatedly * Fanning (surname) * Fanning friction factor, a dimensionless number used in fluid flow calculations * Fan dance, a dance art form * USS ''Fanning'', ships of the United States Navy Places * Cape Fanning, Antarctica * Fanning Ridge, South Georgia Island * Fanning, Kansas, United States * Fanning, Missouri, United States * Tabuaeran Tabuaeran, also known as Fanning Island, is an atoll that is part of the Line Islands of the central Pacific Ocean and part of Kiribati. The land area is , and the population in 2015 was 2,315. The maximum elevation is about 3 m (10 f ..., also known as Fanning Atoll or Fanning Island, one of the Line Islands of the central Pacific Ocean See also * Fan (other) {{Disambiguation, geo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Colebrook Equation
In fluid dynamics, the Darcy friction factor formulae are equations that allow the calculation of the Darcy friction factor, a dimensionless quantity used in the Darcy–Weisbach equation, for the description of friction losses in pipe flow as well as open-channel flow. The Darcy friction factor is also known as the ''Darcy–Weisbach friction factor'', ''resistance coefficient'' or simply ''friction factor''; by definition it is four times larger than the Fanning friction factor. Notation In this article, the following conventions and definitions are to be understood: * The Reynolds number Re is taken to be Re = ''V'' ''D'' / ν, where ''V'' is the mean velocity of fluid flow, ''D'' is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. * The pipe's relative roughness ε / ''D'', where ε is the pipe's effective roughness height and ''D'' the pipe (inside) diameter. * ''f'' stands for the Darcy ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Poiseuille
The poiseuille (symbol Pl) has been proposed as a derived SI unit of dynamic viscosity, named after the French physicist Jean Léonard Marie Poiseuille (1797–1869). In practice the unit has never been widely accepted and most international standards bodies do not include the poiseuille in their list of units. The third edition of the IUPAC Green Book, for example, lists Pa⋅s (pascal-second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...) as the SI-unit for dynamic viscosity, and does not mention the poiseuille. The equivalent CGS unit, the poise, symbol P, is most widely used when reporting viscosity measurements. :1\ \text = 1\ \text\text = 1 \text/\text\text = 1 \text\text/\text^ = 10\ \text\text/\text^ = 10\ \text Liquid water has a viscosity of at at a pressure ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Turbulent Flow
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between those layers. Turbulence is commonly observed in everyday phenomena such as surf, fast flowing rivers, billowing storm clouds, or smoke from a chimney, and most fluid flows occurring in nature or created in engineering applications are turbulent. Turbulence is caused by excessive kinetic energy in parts of a fluid flow, which overcomes the damping effect of the fluid's viscosity. For this reason turbulence is commonly realized in low viscosity fluids. In general terms, in turbulent flow, unsteady vortices appear of many sizes which interact with each other, consequently drag due to friction effects increases. This increases the energy needed to pump fluid through a pipe. The onset of turbulence can be predicted by the dimensionless Reyn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Darcy Friction Factor
Darcy, Darci or Darcey may refer to: Science * Darcy's law, which describes the flow of a fluid through porous material * Darcy (unit), a unit of permeability of fluids in porous material * Darcy friction factor in the field of fluid mechanics * Darcy–Weisbach equation used in hydraulics for calculation of the head loss due to friction People * Darcy (surname), a surname (including a list of people with the name) Men * Darcy Blake (born 1988), Welsh footballer * Darcy Dallas (born 1972), Canadian ice hockey defenceman * Darcy Daniher (born 1989), Australian rules footballer * Darci Frigo, Brazilian activist * Darcy Furber, Canadian politician * Darcy Gardiner (born 1995), Australian rules footballer * Darcy Hordichuk (born 1980), professional ice hockey player * Darcy Kuemper (born 1990), professional ice hockey player * Darcy Lang (born 1995), Australian rules footballer * Darcy Lear (1898–1967), Australian rules footballer * Darcy Lussick (born 1989), Australian rugby ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Darcy–Weisbach Equation
In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach. Currently, there is no formula more accurate or universally applicable than the Darcy-Weisbach supplemented by the Moody diagram or Colebrook equation. The Darcy–Weisbach equation contains a dimensionless friction factor, known as the Darcy friction factor. This is also variously called the Darcy–Weisbach friction factor, friction factor, resistance coefficient, or flow coefficient. Pressure-loss equation In a cylindrical pipe of uniform diameter , flowing full, the pressure loss due to viscous effects is proportional to length and can be characterized by the Darcy–Weisbach equation: :\frac =f_\mathrm \cdot \frac \cdot \frac, where the pressure loss per unit length (SI units: P ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]