Montgomery Reduction
   HOME
*





Montgomery Reduction
In modular arithmetic computation, Montgomery modular multiplication, more commonly referred to as Montgomery multiplication, is a method for performing fast modular multiplication. It was introduced in 1985 by the American mathematician Peter L. Montgomery.Martin Kochanski"Montgomery Multiplication" a colloquial explanation. Montgomery modular multiplication relies on a special representation of numbers called Montgomery form. The algorithm uses the Montgomery forms of and to efficiently compute the Montgomery form of . The efficiency comes from avoiding expensive division operations. Classical modular multiplication reduces the double-width product using division by and keeping only the remainder. This division requires quotient digit estimation and correction. The Montgomery form, in contrast, depends on a constant which is coprime to , and the only division necessary in Montgomery multiplication is division by . The constant can be chosen so that division by is easy, si ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Modular Arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book '' Disquisitiones Arithmeticae'', published in 1801. A familiar use of modular arithmetic is in the 12-hour clock, in which the day is divided into two 12-hour periods. If the time is 7:00 now, then 8 hours later it will be 3:00. Simple addition would result in , but clocks "wrap around" every 12 hours. Because the hour number starts over at zero when it reaches 12, this is arithmetic ''modulo'' 12. In terms of the definition below, 15 is ''congruent'' to 3 modulo 12, so "15:00" on a 24-hour clock is displayed "3:00" on a 12-hour clock. Congruence Given an integer , called a modulus, two integers and are said to be congruent modulo , if is a divisor of their difference (that is, if there is an integer such that ). Congruence modu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extended Euclidean Algorithm
In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's identity, which are integers ''x'' and ''y'' such that : ax + by = \gcd(a, b). This is a certifying algorithm, because the gcd is the only number that can simultaneously satisfy this equation and divide the inputs. It allows one to compute also, with almost no extra cost, the quotients of ''a'' and ''b'' by their greatest common divisor. also refers to a very similar algorithm for computing the polynomial greatest common divisor and the coefficients of Bézout's identity of two univariate polynomials. The extended Euclidean algorithm is particularly useful when ''a'' and ''b'' are coprime. With that provision, ''x'' is the modular multiplicative inverse of ''a'' modulo ''b'', and ''y'' is the modular multiplicative inverse of ''b'' mod ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Computer Arithmetic
In computing, an arithmetic logic unit (ALU) is a combinational digital circuit that performs arithmetic and bitwise operations on integer binary numbers. This is in contrast to a floating-point unit (FPU), which operates on floating point numbers. It is a fundamental building block of many types of computing circuits, including the central processing unit (CPU) of computers, FPUs, and graphics processing units (GPUs). The inputs to an ALU are the data to be operated on, called operands, and a code indicating the operation to be performed; the ALU's output is the result of the performed operation. In many designs, the ALU also has status inputs or outputs, or both, which convey information about a previous operation or the current operation, respectively, between the ALU and external status registers. Signals An ALU has a variety of input and output nets, which are the electrical conductors used to convey digital signals between the ALU and external circuitry. When an ALU is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Side-channel Attack
In computer security, a side-channel attack is any attack based on extra information that can be gathered because of the fundamental way a computer protocol or algorithm is implemented, rather than flaws in the design of the protocol or algorithm itself (e.g. flaws found in a cryptanalysis of a cryptographic algorithm) or minor, but potentially devastating, mistakes or oversights in the implementation. (Cryptanalysis also includes searching for side-channel attacks.) Timing information, power consumption, electromagnetic leaks, and sound are examples of extra information which could be exploited to facilitate side-channel attacks. Some side-channel attacks require technical knowledge of the internal operation of the system, although others such as differential power analysis are effective as black-box attacks. The rise of Web 2.0 applications and software-as-a-service has also significantly raised the possibility of side-channel attacks on the web, even when transmissions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


IEEE Micro
''IEEE Micro'' is a peer-reviewed scientific journal published by the IEEE Computer Society covering small systems and semiconductor chips, including integrated circuit processes and practices, project management, development tools and infrastructure, as well as chip design and architecture, empirical evaluations of small system and IC technologies and techniques, and human and social aspects of system development. Editors-in-chief The following people have been editor-in-chief: * 2019–present: Lizy Kurian John * 2015–2018: Lieven Eeckhout * 2011–2014: Erik R. Altman * 2007–2010: David H. Albonesi * 2003–2006: Pradip Bose * 1999–2001: Ken Sakamura * 1995–1998: Steve Diamond * 1991–1994: Dante Del Corso * 1987–1990: Joe Hootman * 1985–1987: James J. Farrell III * 1983–1984: Peter Rony and Tom Cain * 1980–1982: Richard C. Jaeger External links * Micro Micro may refer to: Measurement * micro- (μ), a metric prefix denoting a factor of 10â ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Little Endian
In computing, endianness, also known as byte sex, is the order or sequence of bytes of a word of digital data in computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-endian system stores the most significant byte of a word at the smallest memory address and the least significant byte at the largest. A little-endian system, in contrast, stores the least-significant byte at the smallest address. Bi-endianness is a feature supported by numerous computer architectures that feature switchable endianness in data fetches and stores or for instruction fetches. Other orderings are generically called middle-endian or mixed-endian. Endianness may also be used to describe the order in which the bits are transmitted over a communication channel, e.g., big-endian in a communications channel transmits the most significant bits first. Bit-endianness is seldom used in other contexts. Etymology Danny Cohen introduced the terms ''big-endian' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hensel's Lemma
In mathematics, Hensel's lemma, also known as Hensel's lifting lemma, named after Kurt Hensel, is a result in modular arithmetic, stating that if a univariate polynomial has a simple root modulo a prime number , then this root can be ''lifted'' to a unique root modulo any higher power of . More generally, if a polynomial factors modulo into two coprime polynomials, this factorization can be lifted to a factorization modulo any higher power of (the case of roots corresponds to the case of degree for one of the factors). By passing to the "limit" (in fact this is an inverse limit) when the power of tends to infinity, it follows that a root or a factorization modulo can be lifted to a root or a factorization over the -adic integers. These results have been widely generalized, under the same name, to the case of polynomials over an arbitrary commutative ring, where is replaced by an ideal, and "coprime polynomials" means "polynomials that generate an ideal containing ". Hense ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Exponentiation By Squaring
Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, is the product of multiplying bases: b^n = \underbrace_. The exponent is usually shown as a superscript to the right of the base. In that case, is called "''b'' raised to the ''n''th power", "''b'' (raised) to the power of ''n''", "the ''n''th power of ''b''", "''b'' to the ''n''th power", or most briefly as "''b'' to the ''n''th". Starting from the basic fact stated above that, for any positive integer n, b^n is n occurrences of b all multiplied by each other, several other properties of exponentiation directly follow. In particular: \begin b^ & = \underbrace_ \\ ex& = \underbrace_ \times \underbrace_ \\ ex& = b^n \times b^m \end In other words, when multiplying a base raised to one exp ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jacobi Symbol
Jacobi symbol for various ''k'' (along top) and ''n'' (along left side). Only are shown, since due to rule (2) below any other ''k'' can be reduced modulo ''n''. Quadratic residues are highlighted in yellow — note that no entry with a Jacobi symbol of −1 is a quadratic residue, and if ''k'' is a quadratic residue modulo a coprime ''n'', then , but not all entries with a Jacobi symbol of 1 (see the and rows) are quadratic residues. Notice also that when either ''n'' or ''k'' is a square, all values are nonnegative. The Jacobi symbol is a generalization of the Legendre symbol. Introduced by Jacobi in 1837, it is of theoretical interest in modular arithmetic and other branches of number theory, but its main use is in computational number theory, especially primality testing and integer factorization; these in turn are important in cryptography. Definition For any integer ''a'' and any positive odd integer ''n'', the Jacobi symbol is defined as the product of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bézout's Identity
In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout, is the following theorem: Here the greatest common divisor of and is taken to be . The integers and are called Bézout coefficients for ; they are not unique. A pair of Bézout coefficients can be computed by the extended Euclidean algorithm, and this pair is, in the case of integers one of the two pairs such that , x, \le , b/d , and , y, \le , a/d , ; equality occurs only if one of and is a multiple of the other. As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem, result from Bézout's identity. A Bézout domain is an integral domain in which Bézout's identity holds. In particular, Bézout's identity holds in principal ideal domains. Every theorem that resu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modular Inverse
In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer is an integer such that the product is congruent to 1 with respect to the modulus .. In the standard notation of modular arithmetic this congruence is written as :ax \equiv 1 \pmod, which is the shorthand way of writing the statement that divides (evenly) the quantity , or, put another way, the remainder after dividing by the integer is 1. If does have an inverse modulo , then there are an infinite number of solutions of this congruence, which form a congruence class with respect to this modulus. Furthermore, any integer that is congruent to (i.e., in 's congruence class) has any element of 's congruence class as a modular multiplicative inverse. Using the notation of \overline to indicate the congruence class containing , this can be expressed by saying that the ''modulo multiplicative inverse'' of the congruence class \overline is the congruence class \overline such that: ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]