Monte-Carlo Integration
   HOME
*





Monte-Carlo Integration
In mathematics, Monte Carlo integration is a technique for numerical integration using random numbers. It is a particular Monte Carlo method that numerically computes a definite integral. While other algorithms usually evaluate the integrand at a regular grid, Monte Carlo randomly chooses points at which the integrand is evaluated. This method is particularly useful for higher-dimensional integrals. There are different methods to perform a Monte Carlo integration, such as uniform sampling, stratified sampling, importance sampling, sequential Monte Carlo (also known as a particle filter), and mean-field particle methods. Overview In numerical integration, methods such as the trapezoidal rule use a deterministic approach. Monte Carlo integration, on the other hand, employs a non-deterministic approach: each realization provides a different outcome. In Monte Carlo, the final outcome is an approximation of the correct value with respective error bars, and the correct value ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Bias Of An Estimator
In statistics, the bias of an estimator (or bias function) is the difference between this estimator's expected value and the true value of the parameter being estimated. An estimator or decision rule with zero bias is called ''unbiased''. In statistics, "bias" is an property of an estimator. Bias is a distinct concept from consistency: consistent estimators converge in probability to the true value of the parameter, but may be biased or unbiased; see bias versus consistency for more. All else being equal, an unbiased estimator is preferable to a biased estimator, although in practice, biased estimators (with generally small bias) are frequently used. When a biased estimator is used, bounds of the bias are calculated. A biased estimator may be used for various reasons: because an unbiased estimator does not exist without further assumptions about a population; because an estimator is difficult to compute (as in unbiased estimation of standard deviation); because a biased est ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Journal Of Computational Physics
The ''Journal of Computational Physics'' is a bimonthly scientific journal covering computational physics that was established in 1966 and is published by Elsevier. As of 2015, its editor-in-chief is Rémi Abgrall (University of Zurich). According to the ''Journal Citation Reports'', ''Journal of Computational Physics'' has a 2021 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as ... of 4.645, ranking it third out of 56 in the category ''Physics, Mathematical''. See also * List of fluid mechanics journals References External links * English-language journals Physics journals Elsevier academic journals Publications established in 1966 Biweekly journals {{physics-journal-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Acta Numerica
''Acta Numerica'' is a mathematics journal publishing research on numerical analysis. It was established in 1992 to publish widely accessible summaries of recent advances in the field. One volume is published each year, consisting of review and survey articles from authors invited by the journal's editorial board. The journal is indexed by '' Mathematical Reviews'' and ''Zentralblatt MATH''. During the period of 2004–2009, it had an MCQ of 3.43, the highest of all journals indexed by ''Mathematical Reviews'' over that period of time."Top Journal MCQs cited in the MR Citation Database", MathSciNet, accessed 2011-1-13 References Similar Journals * Mathematics of Computation (published by the American Mathematical Society) * Journal of Computational and Applied Mathematics * BIT Numerical Mathematics * Numerische Mathematik * Journals from the Society for Industrial and Applied Mathematics ** SIAM Journal on Numerical Analysis ** SIAM Journal on Scientific Computing The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance Reduction
In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used. The main ones are common random numbers, antithetic variates, control variates, importance sampling, stratified sampling, moment matching, conditional Monte Carlo and quasi random variables. For simulation with black-box models subset simulation and line sampling can also be used. Under these headings are a variety of specialized techniques; for example, particle transport simulations make extensive use of "weight windows" and ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monte Carlo Method In Statistical Physics
Monte Carlo in statistical physics refers to the application of the Monte Carlo method to problems in statistical physics, or statistical mechanics. Overview The general motivation to use the Monte Carlo method in statistical physics is to evaluate a multivariable integral. The typical problem begins with a system for which the Hamiltonian is known, it is at a given temperature and it follows the Boltzmann statistics. To obtain the mean value of some macroscopic variable, say A, the general approach is to compute, over all the phase space, PS for simplicity, the mean value of A using the Boltzmann distribution: :\langle A\rangle=\int_ A_ \frac d\vec. where E(\vec)=E_ is the energy of the system for a given state defined by \vec - a vector with all the degrees of freedom (for instance, for a mechanical system, \vec = \left(\vec, \vec \right) ), \beta\equiv 1/k_bT and :Z= \int_ e^d\vec is the partition function. One possible approach to solve this multivariable integral is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Auxiliary Field Monte Carlo
Auxiliary-field Monte Carlo is a method that allows the calculation, by use of Monte Carlo techniques, of averages of operators in many-body quantum mechanical (Blankenbecler 1981, Ceperley 1977) or classical problems (Baeurle 2004, Baeurle 2003, Baeurle 2002a). Reweighting procedure and numerical sign problem The distinctive ingredient of "auxiliary-field Monte Carlo" is the fact that the interactions are decoupled by means of the application of the Hubbard–Stratonovich transformation, which permits the reformulation of many-body theory in terms of a scalar auxiliary- field representation. This reduces the many-body problem to the calculation of a sum or integral over all possible auxiliary-field configurations. In this sense, there is a trade-off: instead of dealing with one very complicated many-body problem, one faces the calculation of an infinite number of simple external-field problems. It is here, as in other related methods, that Monte Carlo enters the game in the g ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quasi-Monte Carlo Method
In numerical analysis, the quasi-Monte Carlo method is a method for numerical integration and solving some other problems using low-discrepancy sequences (also called quasi-random sequences or sub-random sequences). This is in contrast to the regular Monte Carlo method or Monte Carlo integration, which are based on sequences of pseudorandom numbers. Monte Carlo and quasi-Monte Carlo methods are stated in a similar way. The problem is to approximate the integral of a function ''f'' as the average of the function evaluated at a set of points ''x''1, ..., ''x''''N'': : \int_ f(u)\,u \approx \frac\,\sum_^N f(x_i). Since we are integrating over the ''s''-dimensional unit cube, each ''x''''i'' is a vector of ''s'' elements. The difference between quasi-Monte Carlo and Monte Carlo is the way the ''x''''i'' are chosen. Quasi-Monte Carlo uses a low-discrepancy sequence such as the Halton sequence, the Sobol sequence, or the Faure sequence, whereas Monte Carlo uses a pseudorandom sequenc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Metropolis–Hastings Algorithm
In statistics and statistical physics, the Metropolis–Hastings algorithm is a Markov chain Monte Carlo (MCMC) method for obtaining a sequence of random samples from a probability distribution from which direct sampling is difficult. This sequence can be used to approximate the distribution (e.g. to generate a histogram) or to compute an integral (e.g. an expected value). Metropolis–Hastings and other MCMC algorithms are generally used for sampling from multi-dimensional distributions, especially when the number of dimensions is high. For single-dimensional distributions, there are usually other methods (e.g. adaptive rejection sampling) that can directly return independent samples from the distribution, and these are free from the problem of autocorrelated samples that is inherent in MCMC methods. History The algorithm was named after Nicholas Metropolis and W.K. Hastings. Metropolis was the first author to appear on the list of authors of the 1953 article '' Equatio ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Disjoint Sets
In mathematics, two sets are said to be disjoint sets if they have no element in common. Equivalently, two disjoint sets are sets whose intersection is the empty set.. For example, and are ''disjoint sets,'' while and are not disjoint. A collection of two or more sets is called disjoint if any two distinct sets of the collection are disjoint. Generalizations This definition of disjoint sets can be extended to a family of sets \left(A_i\right)_: the family is pairwise disjoint, or mutually disjoint if A_i \cap A_j = \varnothing whenever i \neq j. Alternatively, some authors use the term disjoint to refer to this notion as well. For families the notion of pairwise disjoint or mutually disjoint is sometimes defined in a subtly different manner, in that repeated identical members are allowed: the family is pairwise disjoint if A_i \cap A_j = \varnothing whenever A_i \neq A_j (every two ''distinct'' sets in the family are disjoint).. For example, the collection of sets is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Adaptive Quadrature
Adaptive quadrature is a numerical integration method in which the integral of a function f(x) is approximated using static quadrature rules on adaptively refined subintervals of the region of integration. Generally, adaptive algorithms are just as efficient and effective as traditional algorithms for "well behaved" integrands, but are also effective for "badly behaved" integrands for which traditional algorithms may fail. General scheme Adaptive quadrature follows the general scheme 1. procedure integrate ( f, a, b, τ ) 2. Q \approx \int_a^b f(x)\,\mathrmx 3. \varepsilon \approx \left, Q - \int_a^b f(x)\,\mathrmx\ 4. if ''ε'' > ''τ'' then 5. m = (a + b) / 2 6. Q = integrate(f, a, m, τ/2) + integrate(f, m, b, τ/2) 7. endif 8. return Q An approximation Q to the integral of f(x) over the interval ,b/math> is computed (line 2), as well as an error estimate \varepsilon (line 3). If the estimated error is larger than the required tole ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Strata
In geology and related fields, a stratum ( : strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as either '' bedding surfaces'' or ''bedding planes''.Salvador, A. ed., 1994. ''International stratigraphic guide: a guide to stratigraphic classification, terminology, and procedure. 2nd ed.'' Boulder, Colorado, The Geological Society of America, Inc., 215 pp. . Prior to the publication of the International Stratigraphic Guide, older publications have defined a stratum as either being either equivalent to a single bed or composed of a number of beds; as a layer greater than 1 cm in thickness and constituting a part of a bed; or a general term that includes both ''bed'' and '' lamina''.Neuendorf, K.K.E., Mehl, Jr., J.P., and Jackson, J.A. , eds., 2005. ''Glossary of Geology'' 5th ed. Alexandria, Virginia, American Geological Institute. 779 pp. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]