Moment Problem
   HOME
*



picture info

Moment Problem
In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure ''μ'' to the sequences of moments :m_n = \int_^\infty x^n \,d\mu(x)\,. More generally, one may consider :m_n = \int_^\infty M_n(x) \,d\mu(x)\,. for an arbitrary sequence of functions ''M''''n''. Introduction In the classical setting, μ is a measure on the real line, and ''M'' is the sequence . In this form the question appears in probability theory, asking whether there is a probability measure having specified mean, variance and so on, and whether it is unique. There are three named classical moment problems: the Hamburger moment problem in which the support of μ is allowed to be the whole real line; the Stieltjes moment problem, for , +∞); and the Hausdorff moment problem for a bounded interval, which without loss of generality may be taken as , 1 Existence A sequence of numbers ''m''''n'' is the sequence of moments of a measure ''μ'' if an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Standard Deviation Diagram
Standard may refer to: Symbols * Colours, standards and guidons, kinds of military signs * Heraldic flag, Standard (emblem), a type of a large symbol or emblem used for identification Norms, conventions or requirements * Standard (metrology), an object that bears a defined relationship to a unit of measure used for calibration of measuring devices * Standard (timber unit), an obsolete measure of timber used in trade * Breed standard (also called bench standard), in animal fancy and animal husbandry * BioCompute Object, BioCompute Standard, a standard for next generation sequencing * De facto standard, ''De facto'' standard, product or system with market dominance * Gold standard, a monetary system based on gold; also used metaphorically for the best of several options, against which the others are measured * Internet Standard, a specification ratified as an open standard by the Internet Engineering Task Force * Learning standards, standards applied to education content * Stand ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weierstrass Approximation Theorem
Karl Theodor Wilhelm Weierstrass (german: link=no, Weierstraß ; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a school teacher, eventually teaching mathematics, physics, botany and gymnastics. He later received an honorary doctorate and became professor of mathematics in Berlin. Among many other contributions, Weierstrass formalized the definition of the continuity of a function, proved the intermediate value theorem and the Bolzano–Weierstrass theorem, and used the latter to study the properties of continuous functions on closed bounded intervals. Biography Weierstrass was born into a Roman Catholic family in Ostenfelde, a village near Ennigerloh, in the Province of Westphalia. Weierstrass was the son of Wilhelm Weierstrass, a government official, and Theodora Vonderforst both of whom were catholic Rhinelanders. His inte ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that defines a distance function for which the space is a complete metric space. The earliest Hilbert spaces were studied from this point of view in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the term ''Hilbert space'' for the abstract concept that under ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematical Analysis
Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (mathematics), series, and analytic functions. These theories are usually studied in the context of Real number, real and Complex number, complex numbers and Function (mathematics), functions. Analysis evolved from calculus, which involves the elementary concepts and techniques of analysis. Analysis may be distinguished from geometry; however, it can be applied to any Space (mathematics), space of mathematical objects that has a definition of nearness (a topological space) or specific distances between objects (a metric space). History Ancient Mathematical analysis formally developed in the 17th century during the Scientific Revolution, but many of its ideas can be traced back to earlier mathematicians. Early results in analysis were i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hankel Matrix
In linear algebra, a Hankel matrix (or catalecticant matrix), named after Hermann Hankel, is a square matrix in which each ascending skew-diagonal from left to right is constant, e.g.: \qquad\begin a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \\ \end. More generally, a Hankel matrix is any n \times n matrix A of the form A = \begin a_ & a_ & a_ & \ldots & \ldots &a_ \\ a_ & a_2 & & & &\vdots \\ a_ & & & & & \vdots \\ \vdots & & & & & a_\\ \vdots & & & & a_& a_ \\ a_ & \ldots & \ldots & a_ & a_ & a_ \end. In terms of the components, if the i,j element of A is denoted with A_, and assuming i\le j, then we have A_ = A_ for all k = 0,...,j-i. Properties * The Hankel matrix is a symmetric matrix. * Let J_n be the n \times n exchange matrix. If H is a m \times n Hankel matrix, then H = T J_n where T is a m \times n Toeplitz matrix. ** If T is real symmetric, then H = T J_n will have the same eigenvalues as T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chebyshev–Markov–Stieltjes Inequalities
In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. Informally, they provide sharp bounds on a measure from above and from below in terms of its first moments. Formulation Given ''m''0,...,''m''2''m''-1 ∈ R, consider the collection C of measures ''μ'' on R such that : \int x^k d\mu(x) = m_k for ''k'' = 0,1,...,2''m'' − 1 (and in particular the integral is defined and finite). Let ''P''0,''P''1, ...,''P''''m'' be the first ''m'' + 1 orthogonal polynomials In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the class ... with respect to ''μ'' ∈ C, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Extremal Problem
In mathematics, particularly in calculus, a stationary point of a differentiable function of one variable is a point on the graph of the function where the function's derivative is zero. Informally, it is a point where the function "stops" increasing or decreasing (hence the name). For a differentiable function of several real variables, a stationary point is a point on the surface of the graph where all its partial derivatives are zero (equivalently, the gradient is zero). Stationary points are easy to visualize on the graph of a function of one variable: they correspond to the points on the graph where the tangent is horizontal (i.e., parallel to the -axis). For a function of two variables, they correspond to the points on the graph where the tangent plane is parallel to the plane. Turning points A turning point is a point at which the derivative changes sign. A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Truncated Moment Problem
Truncation is the term used for limiting the number of digits right of the decimal point by discarding the least significant ones. Truncation may also refer to: Mathematics * Truncation (statistics) refers to measurements which have been cut off at some value * Truncation error, Truncation (numerical analysis) refers to truncating an infinite sum by a finite one * Truncation (geometry) is the removal of one or more parts, as for example in truncated cube * Propositional truncation, a type former which truncates a type down to a mere proposition Computer science * Data truncation, an event that occurs when a file or other data is stored in a location too small to accommodate its entire length * Truncate (SQL), a command in the SQL data manipulation language to quickly remove all data from a table Biology * Truncate, a leaf shape * Truncated protein, a protein shortened by a mutation which specifically induces premature termination of messenger RNA translation Other uses

* ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Log-normal Distribution
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable is log-normally distributed, then has a normal distribution. Equivalently, if has a normal distribution, then the exponential function of , , has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values. It is a convenient and useful model for measurements in exact and engineering sciences, as well as medicine, economics and other topics (e.g., energies, concentrations, lengths, prices of financial instruments, and other metrics). The distribution is occasionally referred to as the Galton distribution or Galton's distribution, after Francis Galton. The log-normal distribution has also been associated with other names, such as McAlister, Gibrat and Cobb–Douglas. A log-normal process is the statistical realization of the multipl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Krein's Condition
In mathematical analysis, Krein's condition provides a necessary and sufficient condition for exponential sums : \left\, to be dense in a weighted L2 space on the real line. It was discovered by Mark Krein in the 1940s. A corollary, also called Krein's condition, provides a sufficient condition for the indeterminacy of the moment problem. Statement Let ''μ'' be an absolutely continuous measure on the real line, d''μ''(''x'') = ''f''(''x'') d''x''. The exponential sums : \sum_^n a_k \exp(i \lambda_k x), \quad a_k \in \mathbb, \, \lambda_k \geq 0 are dense in ''L''2(''μ'') if and only if : \int_^\infty \frac \, dx = \infty. Indeterminacy of the moment problem Let ''μ'' be as above; assume that all the moments : m_n = \int_^\infty x^n d\mu(x), \quad n = 0,1,2,\ldots of ''μ'' are finite. If : \int_^\infty \frac \, dx < \infty holds, then the

Carleman's Condition
In mathematics, particularly, in analysis, Carleman's condition gives a sufficient condition for the determinacy of the moment problem. That is, if a measure \mu satisfies Carleman's condition, there is no other measure \nu having the same moments as \mu. The condition was discovered by Torsten Carleman in 1922. Hamburger moment problem For the Hamburger moment problem (the moment problem on the whole real line), the theorem states the following: Let \mu be a measure on \R such that all the moments m_n = \int_^ x^n \, d\mu(x)~, \quad n = 0,1,2,\cdots are finite. If \sum_^\infty m_^ = + \infty, then the moment problem for (m_n) is ''determinate''; that is, \mu is the only measure on \R with (m_n) as its sequence of moments. Stieltjes moment problem For the Stieltjes moment problem In mathematics, the Stieltjes moment problem, named after Thomas Joannes Stieltjes, seeks necessary and sufficient conditions for a sequence (''m''0, ''m''1, ''m''2, ...) to be of the form :m_n = \in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Functions
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]