Mollweide's Formula
   HOME
*





Mollweide's Formula
In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle. A variant in more geometrical style was first published by Isaac Newton in 1707 and then by in 1746. Thomas Simpson published the now-standard expression in 1748. Karl Mollweide republished the same result in 1808 without citing those predecessors. It can be used to check the consistency of solutions of triangles.Ernest Julius Wilczynski, ''Plane Trigonometry and Applications'', Allyn and Bacon, 1914, page 105 Let ''a'', ''b'', and ''c'' be the lengths of the three sides of a triangle. Let ''α'', ''β'', and ''γ'' be the measures of the angles opposite those three sides respectively. Mollweide's formulas are : \begin \frac c = \frac , \\ 0mu \frac c = \frac . \end Relation to other trigonometric identities Because in a planar triangle \tfrac12\gamma = \tfrac12\pi - \tfrac12(\alpha + \beta), these identities can alternately be written in a form in which they ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle With Notations 2
A triangle is a polygon with three Edge (geometry), edges and three Vertex (geometry), vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-Collinearity, collinear, determine a unique triangle and simultaneously, a unique Plane (mathematics), plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Trigonometry
Trigonometry () is a branch of mathematics that studies relationships between side lengths and angles of triangles. The field emerged in the Hellenistic world during the 3rd century BC from applications of geometry to astronomical studies. The Greeks focused on the calculation of chords, while mathematicians in India created the earliest-known tables of values for trigonometric ratios (also called trigonometric functions) such as sine. Throughout history, trigonometry has been applied in areas such as geodesy, surveying, celestial mechanics, and navigation. Trigonometry is known for its many identities. These trigonometric identities are commonly used for rewriting trigonometrical expressions with the aim to simplify an expression, to find a more useful form of an expression, or to solve an equation. History Sumerian astronomers studied angle measure, using a division of circles into 360 degrees. They, and later the Babylonians, studied the ratios of the s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ernest Julius Wilczynski
Ernest Julius Wilczynski (November 13, 1876 – September 14, 1932) was an American mathematician considered the founder of projective differential geometry. Born in Hamburg, Germany, Wilczynski's family emigrated to America and settled in Chicago, Illinois when he was very young. He attended public school in the US but went to college in Germany and received his PhD from the University of Berlin in 1897. He taught at the University of California until 1907, the University of Illinois from 1907 to 1910, and the University of Chicago from 1910 until illness forced his absence from the classroom in 1923. His doctoral students include Archibald Henderson, Ernest Preston Lane, Pauline Sperry Pauline Sperry (March 5, 1885 – September 24, 1967) was an American mathematician. Biography on p. 571-574 of thSupplementary MaterialaAMS/ref> Early life and education Born in Peabody, Massachusetts, Sperry was the daughter of two schoolt ..., Ellis Stouffer, and Charles Thompson Su ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, theologian, and author (described in his time as a " natural philosopher"), widely recognised as one of the greatest mathematicians and physicists and among the most influential scientists of all time. He was a key figure in the philosophical revolution known as the Enlightenment. His book (''Mathematical Principles of Natural Philosophy''), first published in 1687, established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for developing infinitesimal calculus. In the , Newton formulated the laws of motion and universal gravitation that formed the dominant scientific viewpoint for centuries until it was superseded by the theory of relativity. Newton used his mathematical description of gravity to derive Kepler's laws of planetary motion, account for ti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Thomas Simpson
Thomas Simpson FRS (20 August 1710 – 14 May 1761) was a British mathematician and inventor known for the eponymous Simpson's rule to approximate definite integrals. The attribution, as often in mathematics, can be debated: this rule had been found 100 years earlier by Johannes Kepler, and in German it is called Keplersche Fassregel. Biography Simpson was born in Sutton Cheney, Leicestershire. The son of a weaver, Simpson taught himself mathematics. At the age of nineteen, he married a fifty-year old widow with two children. As a youth, he became interested in astrology after seeing a solar eclipse. He also dabbled in divination and caused fits in a girl after 'raising a devil' from her. After this incident, he and his wife had to flee to Derby. He moved with his wife and children to London at age twenty-five, where he supported his family by weaving during the day and teaching mathematics at night. From 1743, he taught mathematics at the Royal Military Academy, Woolwich. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Karl Mollweide
Karl Brandan Mollweide (3 February 1774 – 10 March 1825) was a German mathematician and astronomer who taught in Halle and Leipzig. In trigonometry, he discovered the formula known as Mollweide's formula. He invented a map projection called the Mollweide projection 400px, Mollweide projection of the world 400px, The Mollweide projection with Tissot's indicatrix of deformation The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for maps of the world or celestial sph .... References External links * {{DEFAULTSORT:Mollweide, Karl 1774 births 1825 deaths People from Wolfenbüttel People from the Duchy of Brunswick 19th-century German mathematicians Members of the Göttingen Academy of Sciences and Humanities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Solution Of Triangles
Solution of triangles ( la, solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation. Solving plane triangles A general form triangle has six main characteristics (see picture): three linear (side lengths ) and three angular (). The classical plane trigonometry problem is to specify three of the six characteristics and determine the other three. A triangle can be uniquely determined in this sense when given any of the following: *Three sides (SSS) *Two sides and the included angle (SAS) *Two sides and an angle not included between them (SSA), if the side length adjacent to the angle is shorter than the other side length. *A side and the two angles adjacent to it (ASA) *A side, the angle opposite to it and an angle adjacent t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Napier's Analogies
Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation. The origins of spherical trigonometry in Greek mathematics and the major developments in Islamic mathematics are discussed fully in History of trigonometry and Mathematics in medieval Islam. The subject came to fruition in Early Modern times with important developments by John Napier, Delambre and others, and attained an essentially complete form by the end of the nineteenth century with the publication of Todhunter's textbook ''Spherical trigonometry for the use of colleges and Schools''. Since then, significant developments have been the application of vector methods, quaternion methods, and the use of numerical methods. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Tangents
In trigonometry, the law of tangents is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, , , and are the lengths of the three sides of the triangle, and , , and are the angles ''opposite'' those three respective sides. The law of trigonometric function, tangents states that : \frac = \frac . The law of tangents, although not as commonly known as the law of sines or the law of cosines, is equivalent to the law of sines, and can be used in any case where two sides and the included angle, or two angles and a side, are known. Proof To prove the law of tangents one can start with the law of sines: : \frac = \frac. Let : d = \frac = \frac so that : a = d \sin\alpha \quad\text \quad b = d \sin\beta. It follows that : \frac = \frac = \frac . Using the List of trigonometric identities#Product-to-sum and sum-to-product identities, trigonometric identity, the factor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Cotangents
In trigonometry, the law of cotangentsThe Universal Encyclopaedia of Mathematics, Pan Reference Books, 1976, page 530. English version George Allen and Unwin, 1964. Translated from the German version Meyers Rechenduden, 1960. is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. This is also known as the Cot Theorem. Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of cotangents relates the radius of the inscribed circle of a triangle (the inradius) to its sides and angles. Statement Using the usual notations for a triangle (see the figure at the upper right), where , , are the lengths of the three sides, , , are the vertices opposite those three respective sides, , , are the corresponding angles at those vertices, is the semi-perimeter, that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Semiperimeter
In geometry, the semiperimeter of a polygon is half its perimeter. Although it has such a simple derivation from the perimeter, the semiperimeter appears frequently enough in formulas for triangles and other figures that it is given a separate name. When the semiperimeter occurs as part of a formula, it is typically denoted by the letter ''s''. Triangles The semiperimeter is used most often for triangles; the formula for the semiperimeter of a triangle with side lengths ''a'', ''b'', and ''c'' is :s = \frac. Properties In any triangle, any vertex and the point where the opposite excircle touches the triangle partition the triangle's perimeter into two equal lengths, thus creating two paths each of which has a length equal to the semiperimeter. If A, B, C, A', B', and C' are as shown in the figure, then the segments connecting a vertex with the opposite excircle tangency (AA', BB', and CC', shown in red in the diagram) are known as splitters, and s = , AB, +, A'B, =, AB, +, A ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Law Of Sines
In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, \frac \,=\, \frac \,=\, \frac \,=\, 2R, where , and are the lengths of the sides of a triangle, and , and are the opposite angles (see figure 2), while is the radius of the triangle's circumcircle. When the last part of the equation is not used, the law is sometimes stated using the reciprocals; \frac \,=\, \frac \,=\, \frac. The law of sines can be used to compute the remaining sides of a triangle when two angles and a side are known—a technique known as triangulation. It can also be used when two sides and one of the non-enclosed angles are known. In some such cases, the triangle is not uniquely determined by this data (called the ''ambiguous case'') and the technique gives two possible values for the enclosed angle. The law of sines is one of two trigonometric equations commonly app ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]