Modulatory Space
   HOME
*





Modulatory Space
The spaces described in this article are pitch class spaces which model the relationships between pitch classes in some musical system. These models are often graphs, groups or lattices. Closely related to pitch class space is pitch space, which represents pitches rather than pitch classes, and chordal space, which models relationships between chords. Circular pitch class space The simplest pitch space model is the real line. In the MIDI Tuning Standard, for example, fundamental frequencies ''f'' are mapped to numbers ''p'' according to the equation : p = 69 + 12\log_2 This creates a linear space in which octaves have size 12, semitones (the distance between adjacent keys on the piano keyboard) have size 1, and A440 is assigned the number 69 (meaning middle C is assigned the number 60). To create circular pitch class space we identify or "glue together" pitches ''p'' and ''p'' + 12. The result is a continuous, circular pitch class space that mathematicians call Z/12Z. Ci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Pitch Class Space
In music theory, pitch-class space is the circular space representing all the notes (pitch classes) in a musical octave. In this space, there is no distinction between tones that are separated by an integral number of octaves. For example, C4, C5, and C6, though different pitches, are represented by the same point in pitch class space. Since pitch-class space is a circle, we return to our starting point by taking a series of steps in the same direction: beginning with C, we can move "upward" in pitch-class space, through the pitch classes C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, and B, returning finally to C. By contrast, pitch space is a linear space: the more steps we take in a single direction, the further we get from our starting point. Tonal pitch-class space , and Lerdahl and Jackendoff (1983) use a "reductional format" to represent the perception of pitch-class relations in tonal contexts. These two-dimensional models resemble bar graphs, using height to represent ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polygon
In geometry, a polygon () is a plane figure that is described by a finite number of straight line segments connected to form a closed ''polygonal chain'' (or ''polygonal circuit''). The bounded plane region, the bounding circuit, or the two together, may be called a polygon. The segments of a polygonal circuit are called its '' edges'' or ''sides''. The points where two edges meet are the polygon's '' vertices'' (singular: vertex) or ''corners''. The interior of a solid polygon is sometimes called its ''body''. An ''n''-gon is a polygon with ''n'' sides; for example, a triangle is a 3-gon. A simple polygon is one which does not intersect itself. Mathematicians are often concerned only with the bounding polygonal chains of simple polygons and they often define a polygon accordingly. A polygonal boundary may be allowed to cross over itself, creating star polygons and other self-intersecting polygons. A polygon is a 2-dimensional example of the more general polytope in any number ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Limit (music)
In music theory, limit or harmonic limit is a way of characterizing the harmony found in a piece or genre of music, or the harmonies that can be made using a particular scale. The term ''limit'' was introduced by Harry Partch, who used it to give an upper bound on the complexity of harmony; hence the name. The harmonic series and the evolution of music Harry Partch, Ivor Darreg, and Ralph David Hill are among the many microtonalists to suggest that music has been slowly evolving to employ higher and higher harmonics in its constructs (see emancipation of the dissonance). In medieval music, only chords made of octaves and perfect fifths (involving relationships among the first three harmonics) were considered consonant. In the West, triadic harmony arose (contenance angloise) around the time of the Renaissance, and triads quickly became the fundamental building blocks of Western music. The major and minor thirds of these triads invoke relationships among the first five harmonic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Diaschisma
The diaschisma (or diacisma) is a small musical interval defined as the difference between three octaves and four perfect fifths plus two major thirds (in just intonation). It can be represented by the ratio 2048:2025 and is about 19.5 cents. The use of the name diaschisma for this interval is due to Helmholtz; earlier Rameau had called that interval a "diminished comma" or comma minor. A diaschisma is the difference between a schisma and a syntonic comma, as well as the difference between the greater chromatic semitone (135:128 = 92.18 cents) and the just minor second (16:15 = 111.73 cents). (1897). Columbian cyclopedia, Volume 9', np. Garretson, Cox & Company. pre-ISBN. Medieval theorists Boethius and Tinctoris described the diaschisma as one-half of the Pythagorean minor second, or 256/243, which would make the other half either 25/24 (70.67 cents) or about 45 cents. The diaschisma may be approximated by 89/88, 19.56 cents. Tempering out the diaschisma, in the modern mea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Meantone Temperament
Meantone temperament is a musical temperament, that is a tuning system, obtained by narrowing the fifths so that their ratio is slightly less than 3:2 (making them ''narrower'' than a perfect fifth), in order to push the thirds closer to pure. Meantone temperaments are constructed the same way as Pythagorean tuning, as a stack of equal fifths, but it is a ''temperament'' in that the fifths are not pure. Notable meantone temperaments Equal temperament, obtained by making all semitones the same size, each equal to one-twelfth of an octave (with ratio the 12th root of 2 to one (:1), narrows the fifths by about 2 cents or 1/12 of a Pythagorean comma, and produces thirds that are only slightly better than in Pythagorean tuning. Equal temperament is roughly the same as 1/11 comma meantone tuning. Quarter-comma meantone, which tempers the fifths by 1/4 of a syntonic comma, is the best known type of meantone temperament, and the term ''meantone temperament'' is often used to refer to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Regular Temperament
Regular temperament is any tempered system of musical tuning such that each frequency ratio is obtainable as a product of powers of a finite number of generators, or generating frequency ratios. For instance, in 12-TET, the system of music most commonly used in the Western world, the generator is a tempered fifth (700 cents), which is the basis behind the circle of fifths. When only two generators are needed, with one of them the octave, this is called "linear temperament". The best-known example of a linear temperaments is meantone temperament, where the generating intervals are usually given in terms of a slightly flattened fifth and the octave. Other linear temperaments include the schismatic temperament of Hermann von Helmholtz and miracle temperament. Mathematical description If the generators are all of the prime numbers up to a given prime ''p'', we have what is called ''p''-limit just intonation. Sometimes some irrational number close to one of these primes is substitu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Temperament
Regular temperament is any tempered system of musical tuning such that each frequency ratio is obtainable as a product of powers of a finite number of generators, or generating frequency ratios. For instance, in 12-TET, the system of music most commonly used in the Western world, the generator is a tempered fifth (700 cents), which is the basis behind the circle of fifths. When only two generators are needed, with one of them the octave, this is called "linear temperament". The best-known example of a linear temperaments is meantone temperament, where the generating intervals are usually given in terms of a slightly flattened fifth and the octave. Other linear temperaments include the schismatic temperament of Hermann von Helmholtz and miracle temperament. Mathematical description If the generators are all of the prime numbers up to a given prime ''p'', we have what is called ''p''-limit just intonation. Sometimes some irrational number close to one of these primes is substitu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Toroidal Graph
In the mathematical field of graph theory, a toroidal graph is a graph that can be embedded on a torus. In other words, the graph's vertices can be placed on a torus such that no edges cross. Examples Any graph that can be embedded in a plane can also be embedded in a torus. A toroidal graph of genus 1 can be embedded in a torus but not in a plane. The Heawood graph, the complete graph K7 (and hence K5 and K6), the Petersen graph (and hence the complete bipartite graph K3,3, since the Petersen graph contains a subdivision of it), one of the Blanuša snarks, and all Möbius ladders are toroidal. More generally, any graph with crossing number 1 is toroidal. Some graphs with greater crossing numbers are also toroidal: the Möbius–Kantor graph, for example, has crossing number 4 and is toroidal. Properties Any toroidal graph has chromatic number at most 7. The complete graph K7 provides an example of a toroidal graph with chromatic number 7. Any triangle-free toroidal graph h ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Torus
In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not touch the circle, the surface has a ring shape and is called a torus of revolution. If the axis of revolution is tangent to the circle, the surface is a horn torus. If the axis of revolution passes twice through the circle, the surface is a spindle torus. If the axis of revolution passes through the center of the circle, the surface is a degenerate torus, a double-covered sphere. If the revolved curve is not a circle, the surface is called a ''toroid'', as in a square toroid. Real-world objects that approximate a torus of revolution include swim rings, inner tubes and ringette rings. Eyeglass lenses that combine spherical and cylindrical correction are toric lenses. A torus should not be confused with a '' solid torus'', which is formed by r ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]