Modularity (networks)
   HOME
*



picture info

Modularity (networks)
Modularity is a measure of the structure of networks or graphs which measures the strength of division of a network into modules (also called groups, clusters or communities). Networks with high modularity have dense connections between the nodes within modules but sparse connections between nodes in different modules. Modularity is often used in optimization methods for detecting community structure in networks. However, it has been shown that modularity suffers a resolution limit and, therefore, it is unable to detect small communities. Biological networks, including animal brains, exhibit a high degree of modularity. Motivation Many scientifically important problems can be represented and empirically studied using networks. For example, biological and social patterns, the World Wide Web, metabolic networks, food webs, neural networks and pathological networks are real world problems that can be mathematically represented and topologically studied to reveal some unexpected str ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Gephi 0
Gephi ( ) is an open-source network analysis and visualization software package written in Java on the NetBeans platform. History Initially developed by students of the University of Technology of Compiègne (UTC) in France, Gephi has been selected for the Google Summer of Code in 2009, 2010, 2011, 2012, and 2013. Its last version, 0.9.0 has been launched in December 2015, with updates in February 2016 (0.9.1) and September 2017 (0.9.2). Previous versions are 0.6.0 (2008), 0.7.0 (2010), 0.8.0 (2011), 0.8.1 (2012) and 0.8.2 (2013). The Gephi Consortium, created in 2010, is a French non-profit corporation which supports development of future releases of Gephi. Members include SciencesPo, Linkfluence, WebAtlas, and Quid. Gephi is also supported by a large community of users, structured on a discussion group and a forum and producing numerous blogposts, papers and tutorials. Applications Gephi has been used in a number of research projects in academia, journalism and elsewhere, f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Partitioned Network
Partition may refer to: Computing Hardware * Disk partitioning, the division of a hard disk drive * Memory partition, a subdivision of a computer's memory, usually for use by a single job Software * Partition (database), the division of a database * Logical partition (LPAR), a subset of a computer's resources, virtualized as a separate computer Problems * Binary space partitioning * Partition problem, an NP-complete problem in computer science Mathematics * Partition (number theory), a way to write a number as a sum of other numbers * Multiplicative partition, a way to write a number as a product of other numbers * Partition of an interval * Partition of a set * Partition of unity, a certain kind of set of functions on a topological space * Plane partition * Graph partition Natural science * Partition function (quantum field theory) * Partition function (statistical mechanics) * Partition coefficient, a concept in organic chemistry Law and politics * Partition (law), t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Network Theory
Network theory is the study of graphs as a representation of either symmetric relations or asymmetric relations between discrete objects. In computer science and network science, network theory is a part of graph theory: a network can be defined as a graph in which nodes and/or edges have attributes (e.g. names). Network theory has applications in many disciplines including statistical physics, particle physics, computer science, electrical engineering, biology, archaeology, economics, finance, operations research, climatology, ecology, public health, sociology, and neuroscience. Applications of network theory include logistical networks, the World Wide Web, Internet, gene regulatory networks, metabolic networks, social networks, epistemological networks, etc.; see List of network theory topics for more examples. Euler's solution of the Seven Bridges of Königsberg problem is considered to be the first true proof in the theory of networks. Network optimization Network pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Percolation Theory
In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles network theory and percolation. Introduction A representative question (and the source of the name) is as follows. Assume that some liquid is poured on top of some porous material. Will the liquid be able to make its way from hole to hole and reach the bottom? This physical question is modelled mathematically as a three-dimensional network of vertices, usually called "sites", in which the edge or "bonds" between each two neighbors may be open (allowing the liquid through) with probability , or closed with probability , and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Null Model
In mathematics, for example in the study of statistical properties of Graph (discrete mathematics), graphs, a null model is a type of random object that matches one specific object in some of its features, or more generally satisfies a collection of constraints, but which is otherwise taken to be an unbiasedly random structure. The null model is used as a term of comparison, to verify whether the object in question displays some non-trivial features (properties that wouldn't be expected on the basis of chance alone or as a consequence of the constraints), such as community structure in graphs. An appropriate null model behaves in accordance with a reasonable null hypothesis for the behavior of the system under investigation. One null model of utility in the study of complex networks is that proposed by Newman and Michelle Girvan, Girvan, consisting of a randomized version of an original graph G, produced through edges being rewired at random, under the constraint that the expected ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Community Structure
In the study of complex networks, a network is said to have community structure if the nodes of the network can be easily grouped into (potentially overlapping) sets of nodes such that each set of nodes is densely connected internally. In the particular case of ''non-overlapping'' community finding, this implies that the network divides naturally into groups of nodes with dense connections internally and sparser connections between groups. But ''overlapping'' communities are also allowed. The more general definition is based on the principle that pairs of nodes are more likely to be connected if they are both members of the same community(ies), and less likely to be connected if they do not share communities. A related but different problem is community search, where the goal is to find a community that a certain vertex belongs to. Properties In the study of networks, such as computer and information networks, social networks and biological networks, a number of different charac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Self-loop
In graph theory, a loop (also called a self-loop or a ''buckle'') is an edge (graph theory), edge that connects a vertex (graph theory), vertex to itself. A Graph (discrete mathematics)#Simple graph, simple graph contains no loops. Depending on the context, a Graph (discrete mathematics), graph or a multigraph may be defined so as to either allow or disallow the presence of loops (often in concert with allowing or disallowing multiple edges between the same vertices): * Where graphs are defined so as to ''allow'' loops and multiple edges, a graph without loops or multiple edges is often distinguished from other graphs by calling it a ''simple graph''. * Where graphs are defined so as to ''disallow'' loops and multiple edges, a graph that does have loops or multiple edges is often distinguished from the graphs that satisfy these constraints by calling it a ''multigraph'' or ''pseudograph''. In a graph with one vertex, all edges must be loops. Such a graph is called a bouquet graph ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Simulated Annealing
Simulated annealing (SA) is a probabilistic technique for approximating the global optimum of a given function. Specifically, it is a metaheuristic to approximate global optimization in a large search space for an optimization problem. It is often used when the search space is discrete (for example the traveling salesman problem, the boolean satisfiability problem, protein structure prediction, and job-shop scheduling). For problems where finding an approximate global optimum is more important than finding a precise local optimum in a fixed amount of time, simulated annealing may be preferable to exact algorithms such as gradient descent or branch and bound. The name of the algorithm comes from annealing in metallurgy, a technique involving heating and controlled cooling of a material to alter its physical properties. Both are attributes of the material that depend on their thermodynamic free energy. Heating and cooling the material affects both the temperature and the the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spin Glass
In condensed matter physics, a spin glass is a magnetic state characterized by randomness, besides cooperative behavior in freezing of spins at a temperature called 'freezing temperature' ''Tf''. In ferromagnetic solids, component atoms' magnetic spins all align in the same direction. Spin glass when contrasted with a ferromagnet is defined as " disordered" magnetic state in which spins are aligned randomly or without a regular pattern and the couplings too are random. The term "glass" comes from an analogy between the ''magnetic'' disorder in a spin glass and the ''positional'' disorder of a conventional, chemical glass, e.g., a window glass. In window glass or any amorphous solid the atomic bond structure is highly irregular; in contrast, a crystal has a uniform pattern of atomic bonds. In ferromagnetic solids, magnetic spins all align in the same direction; this is analogous to a crystal's lattice-based structure. The individual atomic bonds in a spin glass are a mixt ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Hamiltonian (quantum Mechanics)
Hamiltonian may refer to: * Hamiltonian mechanics, a function that represents the total energy of a system * Hamiltonian (quantum mechanics), an operator corresponding to the total energy of that system ** Dyall Hamiltonian, a modified Hamiltonian with two-electron nature ** Molecular Hamiltonian, the Hamiltonian operator representing the energy of the electrons and nuclei in a molecule * Hamiltonian (control theory), a function used to solve a problem of optimal control for a dynamical system * Hamiltonian path, a path in a graph that visits each vertex exactly once * Hamiltonian group, a non-abelian group the subgroups of which are all normal * Hamiltonian economic program, the economic policies advocated by Alexander Hamilton, the first United States Secretary of the Treasury See also * Alexander Hamilton (1755 or 1757–1804), American statesman and one of the Founding Fathers of the US * Hamilton (other) Hamilton may refer to: People * Hamilton (name), a common ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Sample Network
Sample or samples may refer to: Base meaning * Sample (statistics), a subset of a population – complete data set * Sample (signal), a digital discrete sample of a continuous analog signal * Sample (material), a specimen or small quantity of something * Sample (graphics), an intersection of a color channel and a pixel * SAMPLE history, a mnemonic acronym for questions medical first responders should ask * Product sample, a sample of a consumer product that is given to the consumer so that he or she may try a product before committing to a purchase * Standard cross-cultural sample, a sample of 186 cultures, used by scholars engaged in cross-cultural studies People *Sample (surname) *Samples (surname) * Junior Samples (1926–1983), American comedian Places * Sample, Kentucky, unincorporated community, United States * Sampleville, Ohio, unincorporated community, United States * Hugh W. and Sarah Sample House, listed on the National Register of Historic Places in Iowa, United Sta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Network
In the context of network theory, a complex network is a graph (network) with non-trivial topological features—features that do not occur in simple networks such as lattices or random graphs but often occur in networks representing real systems. The study of complex networks is a young and active area of scientific research (since 2000) inspired largely by empirical findings of real-world networks such as computer networks, biological networks, technological networks, brain networks, climate networks and social networks. Definition Most social, biological, and technological networks display substantial non-trivial topological features, with patterns of connection between their elements that are neither purely regular nor purely random. Such features include a heavy tail in the degree distribution, a high clustering coefficient, assortativity or disassortativity among vertices, community structure, and hierarchical structure. In the case of directed networks these feat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]