Mixed Data Sampling
   HOME
*





Mixed Data Sampling
Econometric models involving data sampled at different frequencies are of general interest. Mixed-data sampling (MIDAS) is an econometric regression developed by Eric Ghysels with several co-authors. There is now a substantial literature on MIDAS regressions and their applications, including Ghysels, Santa-Clara and Valkanov (2006), Ghysels, Sinko and Valkanov, Andreou, Ghysels and Kourtellos (2010) and Andreou, Ghysels and Kourtellos (2013). MIDAS Regressions A MIDAS regression is a direct forecasting tool which can relate future low-frequency data with current and lagged high-frequency indicators, and yield different forecasting models for each forecast horizon. It can flexibly deal with data sampled at different frequencies and provide a direct forecast of the low-frequency variable. It incorporates each individual high-frequency data in the regression, which solves the problems of losing potentially useful information and including mis-specification. A simple regression example ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Econometric
Econometrics is the application of statistical methods to economic data in order to give empirical content to economic relationships. M. Hashem Pesaran (1987). "Econometrics," '' The New Palgrave: A Dictionary of Economics'', v. 2, p. 8 p. 8–22 Reprinted in J. Eatwell ''et al.'', eds. (1990). ''Econometrics: The New Palgrave''p. 1 p. 1–34Abstract (2008 revision by J. Geweke, J. Horowitz, and H. P. Pesaran). More precisely, it is "the quantitative analysis of actual economic phenomena based on the concurrent development of theory and observation, related by appropriate methods of inference". An introductory economics textbook describes econometrics as allowing economists "to sift through mountains of data to extract simple relationships". Jan Tinbergen is one of the two founding fathers of econometrics. The other, Ragnar Frisch, also coined the term in the sense in which it is used today. A basic tool for econometrics is the multiple linear regression model. ''Econometri ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eric Ghysels
Eric Ghysels (born 1956 in Brussels) is a Belgian-American economist with interest in finance and time series econometrics, and in particular the fields of financial econometrics and financial technology. He is the Edward M. Bernstein Distinguished Professor of Economics at the University of North Carolina and a Professor of Finance at the Kenan-Flagler Business School. He is also the Faculty Research Director of the Rethinc.Labs at the Frank Hawkins Kenan Institute of Private Enterprise. Early life and education Ghysels was born in Brussels, Belgium, as the son of Pierre Ghysels (a civil servant) and Anna Janssens (a homemaker). He completed his undergraduate studies in economics (Supra Cum Laude) at the Vrije Universiteit Brussel in 1979. He obtained a Fulbright Fellowship from the Belgian American Educational Foundation in 1980 and started graduate studies at Northwestern University that year, finishing his PhD at the Kellogg Graduate School of Management of Northwestern Un ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Independent Variable
Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question. In this sense, some common independent variables are time, space, density, mass, fluid flow rate, and previous values of some observed value of interest (e.g. human population size) to predict future values (the dependent variable). Of the two, it is always the dependent variable whose variation is being studied, by altering inputs, also known as regressors in a statistical context. In an experiment, any variable that can be attributed a value without attributing a value to any other variable is called an ind ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dependent Variable
Dependent and independent variables are variables in mathematical modeling, statistical modeling and experimental sciences. Dependent variables receive this name because, in an experiment, their values are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical function), on the values of other variables. Independent variables, in turn, are not seen as depending on any other variable in the scope of the experiment in question. In this sense, some common independent variables are time, space, density, mass, fluid flow rate, and previous values of some observed value of interest (e.g. human population size) to predict future values (the dependent variable). Of the two, it is always the dependent variable whose variation is being studied, by altering inputs, also known as regressors in a statistical context. In an experiment, any variable that can be attributed a value without attributing a value to any other variable is called an in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beta Function
In mathematics, the beta function, also called the Euler integral of the first kind, is a special function that is closely related to the gamma function and to binomial coefficients. It is defined by the integral : \Beta(z_1,z_2) = \int_0^1 t^(1-t)^\,dt for complex number inputs z_1, z_2 such that \Re(z_1), \Re(z_2)>0. The beta function was studied by Leonhard Euler and Adrien-Marie Legendre and was given its name by Jacques Binet; its symbol is a Greek capital beta. Properties The beta function is symmetric, meaning that \Beta(z_1,z_2) = \Beta(z_2,z_1) for all inputs z_1 and z_2.Davis (1972) 6.2.2 p.258 A key property of the beta function is its close relationship to the gamma function: : \Beta(z_1,z_2)=\frac. A proof is given below in . The beta function is also closely related to binomial coefficients. When (or , by symmetry) is a positive integer, it follows from the definition of the gamma function thatDavis (1972) 6.2.1 p.258 : \Beta(m,n) =\dfrac = \frac \B ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Distributed Lag
In statistics and econometrics, a distributed lag model is a model for time series data in which a regression equation is used to predict current values of a dependent variable based on both the current values of an explanatory variable and the lagged (past period) values of this explanatory variable. The starting point for a distributed lag model is an assumed structure of the form :y_t = a + w_0x_t + w_1x_ + w_2x_ + ... + \text or the form :y_t = a + w_0x_t + w_1x_ + w_2x_ + ... + w_nx_ + \text, where ''y''''t'' is the value at time period ''t'' of the dependent variable ''y'', ''a'' is the intercept term to be estimated, and ''w''''i'' is called the lag weight (also to be estimated) placed on the value ''i'' periods previously of the explanatory variable ''x''. In the first equation, the dependent variable is assumed to be affected by values of the independent variable arbitrarily far in the past, so the number of lag weights is infinite and the model is called an ''infinite ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kalman Filter
For statistics and control theory, Kalman filtering, also known as linear quadratic estimation (LQE), is an algorithm that uses a series of measurements observed over time, including statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone, by estimating a joint probability distribution over the variables for each timeframe. The filter is named after Rudolf E. Kálmán, who was one of the primary developers of its theory. This digital filter is sometimes termed the ''Stratonovich–Kalman–Bucy filter'' because it is a special case of a more general, nonlinear filter developed somewhat earlier by the Soviet mathematician Ruslan Stratonovich. In fact, some of the special case linear filter's equations appeared in papers by Stratonovich that were published before summer 1960, when Kalman met with Stratonovich during a conference in Moscow. Kalman filtering has numerous tech ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Machine Learning
Machine learning (ML) is a field of inquiry devoted to understanding and building methods that 'learn', that is, methods that leverage data to improve performance on some set of tasks. It is seen as a part of artificial intelligence. Machine learning algorithms build a model based on sample data, known as training data, in order to make predictions or decisions without being explicitly programmed to do so. Machine learning algorithms are used in a wide variety of applications, such as in medicine, email filtering, speech recognition, agriculture, and computer vision, where it is difficult or unfeasible to develop conventional algorithms to perform the needed tasks.Hu, J.; Niu, H.; Carrasco, J.; Lennox, B.; Arvin, F.,Voronoi-Based Multi-Robot Autonomous Exploration in Unknown Environments via Deep Reinforcement Learning IEEE Transactions on Vehicular Technology, 2020. A subset of machine learning is closely related to computational statistics, which focuses on making predicti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Nowcasting (economics)
Nowcasting in economics is the prediction of the present, the very near future, and the very recent past state of an economic indicator. The term is a portmanteau of "now" and "forecasting" and originates in meteorology. It has recently become popular in economics as typical measures used to assess the state of an economy (e.g., gross domestic product (GDP)), are only determined after a long delay and are subject to revision. Nowcasting models have been applied most notably in Central Banks, who use the estimates to monitor the state of the economy in real-time as a proxy for official measures. Principle While weather forecasters know weather conditions today and only have to predict future weather, economists have to forecast the present and even the recent past. Many official measures are not timely due to the difficulty in collecting information. Historically, nowcasting techniques have been based on simplified heuristic approaches but now rely on complex econometric technique ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Legendre Polynomials
In physical science and mathematics, Legendre polynomials (named after Adrien-Marie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions. Definition by construction as an orthogonal system In this approach, the polynomials are defined as an orthogonal system with respect to the weight function w(x) = 1 over the interval 1,1/math>. That is, P_n(x) is a polynomial of degree n, such that \int_^1 P_m(x) P_n(x) \,dx = 0 \quad \text n \ne m. With the additional standardization co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Econometric Modeling
Econometric models are statistical models used in econometrics. An econometric model specifies the statistical relationship that is believed to hold between the various economic quantities pertaining to a particular economic phenomenon. An econometric model can be derived from a deterministic economic model by allowing for uncertainty, or from an economic model which itself is stochastic. However, it is also possible to use econometric models that are not tied to any specific economic theory. A simple example of an econometric model is one that assumes that monthly spending by consumers is linearly dependent on consumers' income in the previous month. Then the model will consist of the equation :C_t = a + bY_ + e_t, where ''C''''t'' is consumer spending in month ''t'', ''Y''''t''-1 is income during the previous month, and ''et'' is an error term measuring the extent to which the model cannot fully explain consumption. Then one objective of the econometrician is to obtain estimates ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]