Mittag-Leffler's Theorem
   HOME
*





Mittag-Leffler's Theorem
In complex analysis, Mittag-Leffler's theorem concerns the existence of meromorphic functions with prescribed poles. Conversely, it can be used to express any meromorphic function as a sum of partial fractions. It is sister to the Weierstrass factorization theorem, which asserts existence of holomorphic functions with prescribed zeros. The theorem is named after the Swedish mathematician Gösta Mittag-Leffler who published versions of the theorem in 1876 and 1884. Theorem Let U be an open set in \mathbb C and E \subset U be a subset whose limit points, if any, occur on the boundary of U. For each a in E, let p_a(z) be a polynomial in 1/(z-a) without constant coefficient, i.e. of the form p_a(z) = \sum_^ \frac. Then there exists a meromorphic function f on U whose poles are precisely the elements of E and such that for each such pole a \in E, the function f(z)-p_a(z) has only a removable singularity at a; in particular, the principal part of f at a is p_a(z). Furthermore, any oth ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complex Analysis
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates Function (mathematics), functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear engineering, nuclear, aerospace engineering, aerospace, mechanical engineering, mechanical and electrical engineering. As a differentiable function of a complex variable is equal to its Taylor series (that is, it is Analyticity of holomorphic functions, analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions). History Complex analysis is one of the classical ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Principal Part
In mathematics, the principal part has several independent meanings, but usually refers to the negative-power portion of the Laurent series of a function. Laurent series definition The principal part at z=a of a function : f(z) = \sum_^\infty a_k (z-a)^k is the portion of the Laurent series consisting of terms with negative degree. That is, : \sum_^\infty a_ (z-a)^ is the principal part of f at a . If the Laurent series has an inner radius of convergence of 0 , then f(z) has an essential singularity at a, if and only if the principal part is an infinite sum. If the inner radius of convergence is not 0, then f(z) may be regular at a despite the Laurent series having an infinite principal part. Other definitions Calculus Consider the difference between the function differential and the actual increment: :\frac=f'(x)+\varepsilon : \Delta y=f'(x)\Delta x +\varepsilon \Delta x = dy+\varepsilon \Delta x The differential ''dy'' is sometimes called the principal (linear) part of the fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mittag-Leffler Summation
In mathematics, Mittag-Leffler summation is any of several variations of the Borel summation method for summing possibly divergent formal power series, introduced by Definition Let :y(z) = \sum_^\infty y_kz^k be a formal power series in ''z''. Define the transform \scriptstyle \mathcal_\alpha y of \scriptstyle y by :\mathcal_\alpha y(t) \equiv \sum_^\infty \fract^k Then the Mittag-Leffler sum of ''y'' is given by :\lim_\mathcal_\alpha y( z) if each sum converges and the limit exists. A closely related summation method, also called Mittag-Leffler summation, is given as follows . Suppose that the Borel transform \mathcal_1 y(z) converges to an analytic function near 0 that can be analytically continued along the positive real axis to a function growing sufficiently slowly that the following integral is well defined (as an improper integral). Then the Mittag-Leffler sum of ''y'' is given by :\int_0^\infty e^ \mathcal_\alpha y(t^\alpha z) \, dt When ''α'' = 1 this i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inverse Limit
In mathematics, the inverse limit (also called the projective limit) is a construction that allows one to "glue together" several related objects, the precise gluing process being specified by morphisms between the objects. Thus, inverse limits can be defined in any category although their existence depends on the category that is considered. They are a special case of the concept of limit in category theory. By working in the dual category, that is by reverting the arrows, an inverse limit becomes a direct limit or ''inductive limit'', and a ''limit'' becomes a colimit. Formal definition Algebraic objects We start with the definition of an inverse system (or projective system) of groups and homomorphisms. Let (I, \leq) be a directed poset (not all authors require ''I'' to be directed). Let (''A''''i'')''i''∈''I'' be a family of groups and suppose we have a family of homomorphisms f_: A_j \to A_i for all i \leq j (note the order) with the following properties: # f_ is the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Liouville's Theorem (complex Analysis)
In complex analysis, Liouville's theorem, named after Joseph Liouville (although the theorem was first proven by Cauchy in 1844), states that every bounded entire function must be constant. That is, every holomorphic function f for which there exists a positive number M such that , f(z), \leq M for all z in \Complex is constant. Equivalently, non-constant holomorphic functions on \Complex have unbounded images. The theorem is considerably improved by Picard's little theorem, which says that every entire function whose image omits two or more complex numbers must be constant. Proof This important theorem has several proofs. A standard analytical proof uses the fact that holomorphic functions are analytic. Another proof uses the mean value property of harmonic functions. The proof can be adapted to the case where the harmonic function f is merely bounded above or below. See Harmonic function#Liouville's theorem. Corollaries Fundamental theorem of algebra There is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Riemann–Roch Theorem
The Riemann–Roch theorem is an important theorem in mathematics, specifically in complex analysis and algebraic geometry, for the computation of the dimension of the space of meromorphic functions with prescribed zeros and allowed poles. It relates the complex analysis of a connected compact Riemann surface with the surface's purely topological genus ''g'', in a way that can be carried over into purely algebraic settings. Initially proved as Riemann's inequality by , the theorem reached its definitive form for Riemann surfaces after work of Riemann's short-lived student . It was later generalized to algebraic curves, to higher-dimensional varieties and beyond. Preliminary notions A Riemann surface X is a topological space that is locally homeomorphic to an open subset of \Complex, the set of complex numbers. In addition, the transition maps between these open subsets are required to be holomorphic. The latter condition allows one to transfer the notions and methods of complex ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Weierstrass M-test
In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely. It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers. It is named after the German mathematician Karl Weierstrass (1815-1897). Statement Weierstrass M-test. Suppose that (''f''''n'') is a sequence of real- or complex-valued functions defined on a set ''A'', and that there is a sequence of non-negative numbers (''M''''n'') satisfying the conditions * , f_n(x), \leq M_n for all n \geq 1 and all x \in A, and * \sum_^ M_n converges. Then the series :\sum_^ f_n (x) converges absolutely and uniformly on ''A''. The result is often used in combination with the uniform limit theorem. Together they say that if, in addition to the above conditions, the set ''A'' is a topological space and the functions ''f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Compact Space
In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space by making precise the idea of a space having no "punctures" or "missing endpoints", i.e. that the space not exclude any ''limiting values'' of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval ,1would be compact. Similarly, the space of rational numbers \mathbb is not compact, because it has infinitely many "punctures" corresponding to the irrational numbers, and the space of real numbers \mathbb is not compact either, because it excludes the two limiting values +\infty and -\infty. However, the ''extended'' real number line ''would'' be compact, since it contains both infinities. There are many ways to make this heuristic notion precise. These ways usually agree in a metric space, but may not be equivalent in other topologic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Normal Convergence
In mathematics normal convergence is a type of convergence for series of functions. Like absolute-convergence, it has the useful property that it is preserved when the order of summation is changed. History The concept of normal convergence was first introduced by René Baire in 1908 in his book ''Leçons sur les théories générales de l'analyse''. Definition Given a set ''S'' and functions f_n : S \to \mathbb (or to any normed vector space), the series :\sum_^\infty f_n(x) is called normally convergent if the series of uniform norms of the terms of the series converges, i.e., :\sum_^\infty \, f_n\, := \sum_^\infty \sup_ , f_n(x), < \infty.


Distinctions

Normal convergence implies, but should not be confused with, , i.e. uniform convergence of the series of nonn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Residue (complex Analysis)
In mathematics, more specifically complex analysis, the residue is a complex number proportional to the contour integral of a meromorphic function along a path enclosing one of its singularities. (More generally, residues can be calculated for any function f\colon \mathbb \setminus \_k \rightarrow \mathbb that is holomorphic except at the discrete points ''k'', even if some of them are essential singularities.) Residues can be computed quite easily and, once known, allow the determination of general contour integrals via the residue theorem. Definition The residue of a meromorphic function f at an isolated singularity a, often denoted \operatorname(f,a), \operatorname_a(f), \mathop_f(z) or \mathop_f(z), is the unique value R such that f(z)- R/(z-a) has an analytic antiderivative in a punctured disk 0<\vert z-a\vert<\delta. Alternatively, residues can be calculated by finding

Runge's Theorem
In complex analysis, Runge's theorem (also known as Runge's approximation theorem) is named after the German mathematician Carl Runge who first proved it in the year 1885. It states the following: Denoting by C the set of complex numbers, let ''K'' be a compact set, compact subset of C and let ''f'' be a function (mathematics), function which is holomorphic function, holomorphic on an open set containing ''K''. If ''A'' is a set containing Existential quantification, at least one complex number from every bounded set, bounded connected set, connected component of C\''K'' then there exists a sequence (r_n)_ of rational functions which uniform convergence, converges uniformly to ''f'' on ''K'' and such that all the pole (complex analysis), poles of the functions (r_n)_ are in ''A.'' Note that not every complex number in ''A'' needs to be a pole of every rational function of the sequence (r_n)_. We merely know that for all members of (r_n)_ that do have poles, those poles lie in ''A' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Holomorphic Function
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivative in a neighbourhood is a very strong condition: it implies that a holomorphic function is infinitely differentiable and locally equal to its own Taylor series (''analytic''). Holomorphic functions are the central objects of study in complex analysis. Though the term ''analytic function'' is often used interchangeably with "holomorphic function", the word "analytic" is defined in a broader sense to denote any function (real, complex, or of more general type) that can be written as a convergent power series in a neighbourhood of each point in its domain. That all holomorphic functions are complex analytic functions, and vice versa, is a major theorem in complex analysis. Holomorphic functions are also sometimes referred to as ''regular fu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]