HOME
*





Minkowski Problem
In differential geometry, the Minkowski problem, named after Hermann Minkowski, asks for the construction of a strictly convex compact surface ''S'' whose Gaussian curvature is specified. More precisely, the input to the problem is a strictly positive real function ''ƒ'' defined on a sphere, and the surface that is to be constructed should have Gaussian curvature ''ƒ''(''n''(''x'')) at the point ''x'', where ''n''(''x'') denotes the normal to ''S'' at ''x''. Eugenio Calabi stated: "From the geometric view point it he Minkowski problemis the Rosetta Stone, from which several related problems can be solved." In full generality, the Minkowski problem asks for necessary and sufficient conditions on a non-negative Borel measure on the unit sphere ''S''n-1 to be the surface area measure of a convex body in \mathbb^n. Here the surface area measure ''SK'' of a convex body ''K'' is the pushforward of the ''(n-1)''-dimensional Hausdorff measure restricted to the boundary of ''K'' via ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Louis Nirenberg
Louis Nirenberg (February 28, 1925 – January 26, 2020) was a Canadian-American mathematician, considered one of the most outstanding mathematicians of the 20th century. Nearly all of his work was in the field of partial differential equations. Many of his contributions are now regarded as fundamental to the field, such as his strong maximum principle for second-order parabolic partial differential equations and the Newlander-Nirenberg theorem in complex geometry. He is regarded as a foundational figure in the field of geometric analysis, with many of his works being closely related to the study of complex analysis and differential geometry. Biography Nirenberg was born in Hamilton, Ontario to Ukrainian Jewish immigrants. He attended Baron Byng High School and McGill University, completing his BS in both mathematics and physics in 1945. Through a summer job at the National Research Council of Canada, he came to know Ernest Courant's wife Sara Paul. She spoke to Couran ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Communications On Pure And Applied Mathematics
''Communications on Pure and Applied Mathematics'' is a monthly peer-reviewed scientific journal which is published by John Wiley & Sons on behalf of the Courant Institute of Mathematical Sciences. It covers research originating from or solicited by the institute, typically in the fields of applied mathematics, mathematical analysis, or mathematical physics. The journal was established in 1948 as the ''Communications on Applied Mathematics'', obtaining its current title the next year. According to the '' Journal Citation Reports'', the journal has a 2020 impact factor The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as i ... of 3.219. References External links * Mathematics journals Monthly journals Wiley (publisher) academic journals Publications established in 1948 English-la ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Monge–Ampère Equation
In mathematics, a (real) Monge–Ampère equation is a nonlinear second-order partial differential equation of special kind. A second-order equation for the unknown function ''u'' of two variables ''x'',''y'' is of Monge–Ampère type if it is linear in the determinant of the Hessian matrix of ''u'' and in the second-order partial derivatives of ''u''. The independent variables (''x'',''y'') vary over a given domain ''D'' of R2. The term also applies to analogous equations with ''n'' independent variables. The most complete results so far have been obtained when the equation is elliptic. Monge–Ampère equations frequently arise in differential geometry, for example, in the Weyl and Minkowski problems in differential geometry of surfaces. They were first studied by Gaspard Monge in 1784 and later by André-Marie Ampère in 1820. Important results in the theory of Monge–Ampère equations have been obtained by Sergei Bernstein, Aleksei Pogorelov, Charles Fefferman, and Louis Ni ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Dirichlet Problem
In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet problem can be solved for many PDEs, although originally it was posed for Laplace's equation. In that case the problem can be stated as follows: :Given a function ''f'' that has values everywhere on the boundary of a region in R''n'', is there a unique continuous function ''u'' twice continuously differentiable in the interior and continuous on the boundary, such that ''u'' is harmonic in the interior and ''u'' = ''f'' on the boundary? This requirement is called the Dirichlet boundary condition. The main issue is to prove the existence of a solution; uniqueness can be proved using the maximum principle. History The Dirichlet problem goes back to George Green, who studied the problem on general domains with general boundary con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Calabi Conjecture
In the mathematical field of differential geometry, the Calabi conjecture was a conjecture about the existence of certain kinds of Riemannian metrics on certain complex manifolds, made by . It was proved by , who received the Fields Medal and Oswald Veblen Prize in Geometry, Oswald Veblen Prize in part for his proof. His work, principally an analysis of an elliptic partial differential equation known as the Monge–Ampère equation, complex Monge–Ampère equation, was an influential early result in the field of geometric analysis. More precisely, Calabi's conjecture asserts the resolution of the prescribed Ricci curvature problem within the setting of Kähler metrics on closed manifold, closed complex manifolds. According to Chern–Weil theory, the Ricci form of any such metric is a differential form, closed differential 2-form which represents the first Chern class. Calabi conjectured that for any such differential form , there is exactly one Kähler metric in each Kähler geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elliptic Partial Differential Equation
Second-order linear partial differential equations (PDEs) are classified as either elliptic, hyperbolic, or parabolic. Any second-order linear PDE in two variables can be written in the form :Au_ + 2Bu_ + Cu_ + Du_x + Eu_y + Fu +G= 0,\, where , , , , , , and are functions of and and where u_x=\frac, u_=\frac and similarly for u_,u_y,u_. A PDE written in this form is elliptic if :B^2-AC, applying the chain rule once gives :u_=u_\xi \xi_x+u_\eta \eta_x and u_=u_\xi \xi_y+u_\eta \eta_y, a second application gives :u_=u_ _x+u_ _x+2u_\xi_x\eta_x+u_\xi_+u_\eta_, :u_=u_ _y+u_ _y+2u_\xi_y\eta_y+u_\xi_+u_\eta_, and :u_=u_ \xi_x\xi_y+u_ \eta_x\eta_y+u_(\xi_x\eta_y+\xi_y\eta_x)+u_\xi_+u_\eta_. We can replace our PDE in x and y with an equivalent equation in \xi and \eta :au_ + 2bu_ + cu_ \text= 0,\, where :a=A^2+2B\xi_x\xi_y+C^2, :b=2A\xi_x\eta_x+2B(\xi_x\eta_y+\xi_y\eta_x) +2C\xi_y\eta_y , and :c=A^2+2B\eta_x\eta_y+C^2. To transform our PDE into the desired canonical f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Global Differential Geometry
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries. Since the late 19th century, differential geometry has grown into a field concerned more generally with geometric structures on differentiable manifolds. A geometric structure is one which defines some notion of size, distance, shape, volume, or other rigidifying structure. F ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


International Congress Of Mathematicians
The International Congress of Mathematicians (ICM) is the largest conference for the topic of mathematics. It meets once every four years, hosted by the International Mathematical Union (IMU). The Fields Medals, the Nevanlinna Prize (to be renamed as the IMU Abacus Medal), the Gauss Prize, and the Chern Medal are awarded during the congress's opening ceremony. Each congress is memorialized by a printed set of Proceedings recording academic papers based on invited talks intended to be relevant to current topics of general interest. Being invited to talk at the ICM has been called "the equivalent ... of an induction to a hall of fame". History Felix Klein and Georg Cantor are credited with putting forward the idea of an international congress of mathematicians in the 1890s.A. John Coleman"Mathematics without borders": a book review ''CMS Notes'', vol 31, no. 3, April 1999, pp. 3-5 The University of Chicago, which had opened in 1892, organized an International Mathema ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fields Medal
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award honours the Canadian mathematician John Charles Fields. The Fields Medal is regarded as one of the highest honors a mathematician can receive, and has been described as the Nobel Prize of Mathematics, although there are several major differences, including frequency of award, number of awards, age limits, monetary value, and award criteria. According to the annual Academic Excellence Survey by ARWU, the Fields Medal is consistently regarded as the top award in the field of mathematics worldwide, and in another reputation survey conducted by IREG in 2013–14, the Fields Medal came closely after the Abel Prize as the second most prestigious international award in mathematics. The prize includes a monetary award which, since 2006, has bee ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Shiu-Yuen Cheng
Shiu-Yuen Cheng (鄭紹遠) is a Hong Kong mathematician. He is currently the Chair Professor of Mathematics at the Hong Kong University of Science and Technology. Cheng received his Ph.D. in 1974, under the supervision of Shiing-Shen Chern, from University of California at Berkeley. Cheng then spent some years as a post-doctoral fellow and assistant professor at Princeton University and the State University of New York at Stony Brook. Then he became a full professor at University of California at Los Angeles. Cheng chaired the Mathematics departments of both the Chinese University of Hong Kong and the Hong Kong University of Science and Technology in the 1990s. In 2004, he became the Dean of Science at HKUST. In 2012, he became a fellow of the American Mathematical Society. He is well known for contributions to differential geometry and partial differential equations, including Cheng's eigenvalue comparison theorem, Cheng's maximal diameter theorem, and a number of works with Sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Shing-Tung Yau
Shing-Tung Yau (; ; born April 4, 1949) is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University. Yau was born in Shantou, China, moved to Hong Kong at a young age, and to the United States in 1969. He was awarded the Fields Medal in 1982, in recognition of his contributions to partial differential equations, the Calabi conjecture, the positive energy theorem, and the Monge–Ampère equation. Yau is considered one of the major contributors to the development of modern differential geometry and geometric analysis. The impact of Yau's work can be seen in the mathematical and physical fields of differential geometry, partial differential equations, convex geometry, algebraic geometry, enumerative geometry, mirror symmetry, general relativity, and string theory, while his work has also touched upon applie ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]