Micrometeorology
   HOME
*





Micrometeorology
Microscale meteorology or micrometeorology is the study of short-lived atmospheric phenomena smaller than mesoscale, about or less. These two branches of meteorology are sometimes grouped together as "mesoscale and microscale meteorology" (MMM) and together study all phenomena smaller than synoptic scale; that is they study features generally too small to be depicted on a standard weather map. These include small and generally fleeting cloud "puffs" and other small cloud features. Microscale meteorology controls the most important mixing and dilution processes in the atmosphere. Important topics in microscale meteorology include heat transfer and gas exchange between soil, vegetation, and/or surface water and the atmosphere caused by near-ground turbulence. Measuring these transport processes involves use of micrometeorological (or flux) towers. Variables often measured or derived include net radiation, sensible heat flux, latent heat flux, ground heat storage, and fluxes of trac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Eddy Covariance
The eddy covariance (also known as eddy correlation and eddy flux) is a key atmospheric measurement technique to measure and calculate vertical turbulent fluxes within atmospheric boundary layers. The method analyses high-frequency wind and scalar atmospheric data series, gas, energy, and momentum, which yields values of fluxes of these properties. It is a statistical method used in meteorology and other applications ( micrometeorology, oceanography, hydrology, agricultural sciences, industrial and regulatory applications, etc.) to determine exchange rates of trace gases over natural ecosystems and agricultural fields, and to quantify gas emissions rates from other land and water areas. It is frequently used to estimate momentum, heat, water vapour, carbon dioxide and methane fluxes.Burba, G., 2013. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: a Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. LI-COR Bioscience ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Earth's Atmosphere
The atmosphere of Earth is the layer of gases, known collectively as air, retained by Earth's gravity that surrounds the planet and forms its planetary atmosphere. The atmosphere of Earth protects life on Earth by creating pressure allowing for liquid water to exist on the Earth's surface, absorbing ultraviolet solar radiation, warming the surface through heat retention (greenhouse effect), and reducing temperature extremes between day and night (the diurnal temperature variation). By mole fraction (i.e., by number of molecules), dry air contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and small amounts of other gases. Air also contains a variable amount of water vapor, on average around 1% at sea level, and 0.4% over the entire atmosphere. Air composition, temperature, and atmospheric pressure vary with altitude. Within the atmosphere, air suitable for use in photosynthesis by terrestrial plants and breathing of terrestrial animals is found only in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Biosphere
The biosphere (from Greek βίος ''bíos'' "life" and σφαῖρα ''sphaira'' "sphere"), also known as the ecosphere (from Greek οἶκος ''oîkos'' "environment" and σφαῖρα), is the worldwide sum of all ecosystems. It can also be termed the zone of life on Earth. The biosphere (which is technically a spherical shell) is virtually a closed system with regard to matter, with minimal inputs and outputs. With regard to energy, it is an open system, with photosynthesis capturing solar energy at a rate of around 130 terawatts per year. However it is a self-regulating system close to energetic equilibrium."Biosphere"
in ''The Columbia Encyclopedia'', 6th ed. (2004) Columbia University Press.
By the most general
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Surface Weather Analysis
Surface weather analysis is a special type of weather map that provides a view of weather elements over a geographical area at a specified time based on information from ground-based weather stations. Weather maps are created by plotting or tracing the values of relevant quantities such as sea level pressure, temperature, and cloud cover onto a geographical map to help find synoptic scale features such as weather fronts. The first weather maps in the 19th century were drawn well after the fact to help devise a theory on storm systems.Eric R. MillerAmerican Pioneers in Meteorology.Retrieved on 2007-04-18. After the advent of the telegraph, simultaneous surface weather observations became possible for the first time, and beginning in the late 1840s, the Smithsonian Institution became the first organization to draw real-time surface analyses. Use of surface analyses began first in the United States, spreading worldwide during the 1870s. Use of the Norwegian cyclone model for fronta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Spatial Scale
Spatial scale is a specific application of the term scale for describing or categorizing (e.g. into orders of magnitude) the size of a space (hence ''spatial''), or the extent of it at which a phenomenon or process occurs. For instance, in physics an object or phenomenon can be called microscopic if too small to be visible. In climatology, a micro-climate is a climate which might occur in a mountain, valley or near a lake shore. In statistics, a megatrend is a political, social, economical, environmental or technological trend which involves the whole planet or is supposed to last a very large amount of time. The concept is also used in geography, astronomy, and meteorology. These divisions are somewhat arbitrary; where, on this table, ''mega-'' is assigned global scope, it may only apply continentally or even regionally in other contexts. The interpretations of ''meso-'' and ''macro-'' must then be adjusted accordingly. See also * Astronomical units of length * Cosmi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Misoscale Meteorology
Misoscale is an unofficial scale of meteorological phenomena that ranges in size from to about . This scale was proposed by Ted Fujita, the founder of the Fujita scale, to classify phenomenon of the order of the rotation within a thunderstorm, the scale of the funnel cloud or a tornado, and the size of the swath of destruction of a microburst. It is a subdivision of the microscale. References See also * Synoptic scale The synoptic scale in meteorology (also known as large scale or cyclonic scale) is a horizontal length scale of the order of 1000 kilometers (about 620 miles) or more. This corresponds to a horizontal scale typical of mid-latitude depressions (e. ... * Mesoscale Microscale meteorology {{climate-stub fr:Micro-échelle#Subdivisions ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Microscale And Macroscale Models
Microscale models form a broad class of computational models that simulate fine-scale details, in contrast with macroscale models, which amalgamate details into select categories. Microscale and macroscale models can be used together to understand different aspects of the same problem. Applications Macroscale models can include ordinary, partial, and integro-differential equations, where categories and flows between the categories determine the dynamics, or may involve only algebraic equations. An abstract macroscale model may be combined with more detailed microscale models. Connections between the two scales are related to multiscale modeling. One mathematical technique for multiscale modeling of nanomaterials is based upon the use of multiscale Green's function. In contrast, microscale models can simulate a variety of details, such as individual bacteria in biofilms, individual pedestrians in simulated neighborhoods, individual light beams in ray-tracing imagery, indivi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mesonet
In meteorology and climatology, a mesonet, portmanteau of mesoscale network, is a network of automated weather and, often, environmental monitoring stations designed to observe mesoscale meteorological phenomena and/or microclimates. Dry lines, squall lines, and sea breezes are examples of phenomena observed by mesonets. Due to the space and time scales associated with mesoscale phenomena and microclimates, weather stations comprising a mesonet are spaced closer together and report more frequently than synoptic scale observing networks, such as the WMO Global Observing System (GOS) and US ASOS. The term mesonet refers to the collective group of these weather stations, which are usually owned and operated by a common entity. Mesonets generally record in situ surface weather observations but some involve other observation platforms, particularly vertical profiles of the planetary boundary layer (PBL). Other environmental parameters may include insolation and various variables of ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Weather Station
A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include temperature, atmospheric pressure, humidity, wind speed, wind direction, and precipitation amounts. Wind measurements are taken with as few other obstructions as possible, while temperature and humidity measurements are kept free from direct solar radiation, or insolation. Manual observations are taken at least once daily, while automated measurements are taken at least once an hour. Weather conditions out at sea are taken by ships and buoys, which measure slightly different meteorological quantities such as sea surface temperature (SST), wave height, and wave period. Drifting weather buoys outnumber their moored versions by a significant amount. Weather instruments Typical weather stations have the following instruments: * Thermometer for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Automatic Weather Station
An automatic weather station (AWS) is an automated version of the traditional weather station, either to save human labour or to enable measurements from remote areas. An AWS will typically consist of a weather-proof enclosure containing the data logger, rechargeable battery, telemetry (optional) and the meteorological sensors with an attached solar panel or wind turbine and mounted upon a mast. The specific configuration may vary due to the purpose of the system. The system may report in near real time via the Argos System, LoRa and the Global Telecommunications System, or save the data for later recovery. In the past, automatic weather stations were often placed where electricity and communication lines were available. Nowadays, the solar panel, wind turbine and mobile phone technology have made it possible to have wireless stations that are not connected to the electrical grid or hardline telecommunications network. Sensors Most automatic weather stations have * Thermometer ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Environmental Monitoring
Environmental monitoring describes the processes and activities that need to take place to characterize and monitor the quality of the environment. Environmental monitoring is used in the preparation of environmental impact assessments, as well as in many circumstances in which human activities carry a risk of harmful effects on the natural environment. All monitoring strategies and programs have reasons and justifications which are often designed to establish the current status of an environment or to establish trends in environmental parameters. In all cases, the results of monitoring will be reviewed, analyzed statistically, and published. The design of a monitoring program must therefore have regard to the final use of the data before monitoring starts. Environmental monitoring includes monitoring of air quality, soils and water quality. Air quality monitoring Air pollutants are atmospheric substances—both naturally occurring and anthropogenic—which may potentially ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]