Mechanics Of Gelation
   HOME
*





Mechanics Of Gelation
Mechanics of gelation describes processes relevant to sol-gel process. In a static sense, the fundamental difference between a liquid and a solid is that the solid has elastic resistance against a shearing stress while a liquid does not. Thus, a simple liquid will not typically support a transverse acoustic phonon, or shear wave. Gels have been described by Born as liquids in which an elastic resistance against shearing survives, yielding both viscous and elastic properties. It has been shown theoretically that in a certain low-frequency range, polymeric gels should propagate shear waves with relatively low damping. The distinction between a sol (solution) and a gel therefore appears to be understood in a manner analogous to the practical distinction between the elastic and plastic deformation ranges of a metal. The distinction lies in the ability to respond to an applied shear force via macroscopic viscous flow. In a dynamic sense, the response of a gel to an alternating force (o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field for a system of charged particles. Electric fields originate from electric charges and time-varying electric currents. Electric fields and magnetic fields are both manifestations of the electromagnetic field, one of the four fundamental interactions (also called forces) of nature. Electric fields are important in many areas of physics, and are exploited in electrical technology. In atomic physics and chemistry, for instance, the electric field is the attractive force holding the atomic nucleus and electrons together in atoms. It is also the force responsible for chemical bonding between atoms that result in molecules. The electric field is defined as a vector field that associates to each point in space the electrostatic ( Coulomb) for ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Random Graph Theory Of Gelation
Random graph theory of gelation is a mathematical theory for sol–gel processes. The theory is a collection of results that generalise the Flory–Stockmayer theory, and allow identification of the gel point, gel fraction, size distribution of polymers, molar mass distribution and other characteristics for a set of many polymerising monomers carrying arbitrary numbers and types of reactive functional groups. The theory builds upon the notion of the random graph, introduced by mathematicians Paul Erdős and Alfréd Rényi, and independently by Edgar Gilbert in late 1950's, as well as on the generalisation of this concept known as the random graph with a fixed degree sequence. The theory has been originally developed to explain step-growth polymerisation, and adaptations to other types of polymerisation now exist. Along with providing theoretical results the theory is also constructive. It indicates that the graph-like structures resulting from polymerisation can be sampled with ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Freeze Gelation
Freeze-gelation, is a form of sol-gel processing of ceramics that enables a ceramic object to be fabricated in complex shapes, without the need for high-temperature sintering. The process is similar to freeze-casting. The process is simple, but the science is, as of 2005, not well understood. The most common process involves the mixing of a silica solution with a filler powder. For example, if we were making a component out of alumina, aluminium oxide, then we would still use a silica sol, but alumina filler powder. The relative amounts used differ, normally between 3 and 4 times more filler than sol is added by weight. A wetting agent is added, such that the filler powder disperses properly in the sol, which is mostly water. This makes the mixture doughy and stiff. The mixture is, however, highly thixotropic, so that when vibrated it turns liquid. The stiff dough is placed in a mold and the mold vibrated to liquefy the mixture, filling the mold and releasing any trapped air. The ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Freeze-casting
Freeze-casting, also frequently referred to as ''ice-templating'', or ''freeze alignment'', is a technique that exploits the highly anisotropic solidification behavior of a solvent (generally water) in a well-dispersed slurry to controllably template a directionally porous ceramic. By subjecting an aqueous slurry to a directional temperature gradient, ice crystals will nucleate on one side of the slurry and grow along the temperature gradient. The ice crystals will redistribute the suspended ceramic particles as they grow within the slurry, effectively templating the ceramic. Once solidification has ended, the frozen, templated ceramic is placed into a freeze-dryer to remove the ice crystals. The resulting green body contains anisotropic macropores in a replica of the sublimated ice crystals and micropores found between the ceramic particles in the walls. This structure is often sintered to consolidate the particulate walls and provide strength to the porous material. The porosit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Relaxation (physics)
In the physical sciences, relaxation usually means the return of a perturbed system into equilibrium. Each relaxation process can be categorized by a relaxation time τ. The simplest theoretical description of relaxation as function of time ''t'' is an exponential law (exponential decay A quantity is subject to exponential decay if it decreases at a rate proportional to its current value. Symbolically, this process can be expressed by the following differential equation, where is the quantity and (lambda) is a positive rate ...). In simple linear systems Mechanics: Damped unforced oscillator Let the homogeneous differential equation: :m\frac+\gamma\frac+ky=0 model damped harmonic oscillator, damped unforced oscillations of a weight on a spring. The displacement will then be of the form y(t) = A e^ \cos(\mu t - \delta). The constant T (=2m/\gamma) is called the relaxation time of the system and the constant μ is the quasi-frequency. Electronics: RC circuit In an RC ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Compressibility
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a fluid or solid as a response to a pressure (or mean stress) change. In its simple form, the compressibility \kappa (denoted in some fields) may be expressed as :\beta =-\frac\frac, where is volume and is pressure. The choice to define compressibility as the negative of the fraction makes compressibility positive in the (usual) case that an increase in pressure induces a reduction in volume. The reciprocal of compressibility at fixed temperature is called the isothermal bulk modulus. Definition The specification above is incomplete, because for any object or system the magnitude of the compressibility depends strongly on whether the process is isentropic or isothermal. Accordingly, isothermal compressibility is defined: :\beta_T=-\f ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scattered Radiation
Scattering is a term used in physics to describe a wide range of physical processes where moving particles or radiation of some form, such as light or sound, are forced to deviate from a straight trajectory by localized non-uniformities (including particles and radiation) in the medium through which they pass. In conventional use, this also includes deviation of reflected radiation from the angle predicted by the law of reflection. Reflections of radiation that undergo scattering are often called ''diffuse reflections'' and unscattered reflections are called ''specular'' (mirror-like) reflections. Originally, the term was confined to light scattering (going back at least as far as Isaac Newton in the 17th century). As more "ray"-like phenomena were discovered, the idea of scattering was extended to them, so that William Herschel could refer to the scattering of "heat rays" (not then recognized as electromagnetic in nature) in 1800. John Tyndall, a pioneer in light scattering researc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Plasticity (physics)
In physics and materials science, plasticity, also known as plastic deformation, is the ability of a solid material to undergo permanent deformation, a non-reversible change of shape in response to applied forces. For example, a solid piece of metal being bent or pounded into a new shape displays plasticity as permanent changes occur within the material itself. In engineering, the transition from elastic behavior to plastic behavior is known as yielding. Plastic deformation is observed in most materials, particularly metals, soils, rocks, concrete, and foams. However, the physical mechanisms that cause plastic deformation can vary widely. At a crystalline scale, plasticity in metals is usually a consequence of dislocations. Such defects are relatively rare in most crystalline materials, but are numerous in some and part of their crystal structure; in such cases, plastic crystallinity can result. In brittle materials such as rock, concrete and bone, plasticity is caused ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Elasticity (physics)
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after removal. This is in contrast to ''plasticity'', in which the object fails to do so and instead remains in its deformed state. The physical reasons for elastic behavior can be quite different for different materials. In metals, the atomic lattice changes size and shape when forces are applied (energy is added to the system). When forces are removed, the lattice goes back to the original lower energy state. For rubbers and other polymers, elasticity is caused by the stretching of polymer chains when forces are applied. Hooke's law states that the force required to deform elastic objects should be directly proportional to the distanc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplitude (see below), which are all functions of the magnitude of the differences between the variable's extreme values. In older texts, the phase of a periodic function is sometimes called the amplitude. Definitions Peak amplitude & semi-amplitude For symmetric periodic waves, like sine waves, square waves or triangle waves ''peak amplitude'' and ''semi amplitude'' are the same. Peak amplitude In audio system measurements, telecommunications and others where the measurand is a signal that swings above and below a reference value but is not sinusoidal, peak amplitude is often used. If the reference is zero, this is the maximum absolute value of the signal; if the reference is a mean value (DC component), the peak amplitude is th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ehrenfest
Ehrenfest is a surname. Notable people with the surname include: *Paul Ehrenfest (1880-1933), Austrian physicist and mathematician **Ehrenfest equations **Ehrenfest model **Ehrenfest paradox **Ehrenfest theorem The Ehrenfest theorem, named after Paul Ehrenfest, an Austrian theoretical physicist at Leiden University, relates the time derivative of the expectation values of the position and momentum operators ''x'' and ''p'' to the expectation value of th ... ** 32796 Ehrenfest * Tatjana Ehrenfest-Afanassjewa (1876-1964), Ukrainian-Russian mathematician, wife of Paul * Tanja van Aardenne-Ehrenfest (1905–1984), Austrian Dutch mathematician, daughter of Paul See also * Ehrenfeld (other) * Ehrenfels (other) * Ehrenbaum * Ehrenberg (other) * Ehrenburg (other) * Ehrenhaft * Ehrenpreis * Ehrenstein * Ehrenthal {{surname, Ehrenfest German-language surnames ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]