Max Noether's Theorem On Curves
   HOME
*





Max Noether's Theorem On Curves
In algebraic geometry, Max Noether's theorem on curves is a theorem about curves lying on algebraic surfaces, which are hypersurfaces in ''P''3, or more generally complete intersections. It states that, for degree at least four for hypersurfaces, the ''generic Generic or generics may refer to: In business * Generic term, a common name used for a range or class of similar things not protected by trademark * Generic brand, a brand for a product that does not have an associated brand or trademark, other ...'' such surface has no curve on it apart from the hyperplane section. In more modern language, the Picard group is infinite cyclic, other than for a short list of degrees. This is now often called the Noether-Lefschetz theorem. {{algebraic-geometry-stub Algebraic geometry ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Surface
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface has complex dimension two (as a complex manifold, when it is non-singular) and so of dimension four as a smooth manifold. The theory of algebraic surfaces is much more complicated than that of algebraic curves (including the compact Riemann surfaces, which are genuine surfaces of (real) dimension two). Many results were obtained, however, in the Italian school of algebraic geometry, and are up to 100 years old. Classification by the Kodaira dimension In the case of dimension one varieties are classified by only the topological genus, but dimension two, the difference between the arithmetic genus p_a and the geometric genus p_g turns to be important because we cannot distinguish birationally only the topological genus. Then we introduce the irregularity for the classification of them. A summary of the results (in det ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hypersurface
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally (near every point), and sometimes globally. A hypersurface in a (Euclidean, affine, or projective) space of dimension two is a plane curve. In a space of dimension three, it is a surface. For example, the equation :x_1^2+x_2^2+\cdots+x_n^2-1=0 defines an algebraic hypersurface of dimension in the Euclidean space of dimension . This hypersurface is also a smooth manifold, and is called a hypersphere or an -sphere. Smooth hypersurface A hypersurface that is a smooth manifold is called a ''smooth hypersurface''. In , a smooth hypersurface is orienta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Complete Intersection
In mathematics, an algebraic variety ''V'' in projective space is a complete intersection if the ideal of ''V'' is generated by exactly ''codim V'' elements. That is, if ''V'' has dimension ''m'' and lies in projective space ''P''''n'', there should exist ''n'' − ''m'' homogeneous polynomials: :F_i(X_0,\cdots,X_n), 1\leq i\leq n - m, in the homogeneous coordinates ''X''''j'', which generate all other homogeneous polynomials that vanish on ''V''. Geometrically, each ''F''''i'' defines a hypersurface; the intersection of these hypersurfaces should be ''V''. The intersection of hypersurfaces will always have dimension at least ''m'', assuming that the field of scalars is an algebraically closed field such as the complex numbers. The question is essentially, can we get the dimension down to ''m'', with no extra points in the intersection? This condition is fairly hard to check as soon as the codimension . When then ''V'' is automatically a hypersurface and there is nothing to pr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Generic Property
In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomial does not have a root at zero," or "A generic square matrix is invertible." As another example, a generic property of a space is a property that holds at "almost all" points of the space, as in the statement, "If is a smooth function between smooth manifolds, then a generic point of is not a critical value of ." (This is by Sard's theorem.) There are many different notions of "generic" (what is meant by "almost all") in mathematics, with corresponding dual notions of "almost none" (negligible set); the two main classes are: * In measure theory, a generic property is one that holds almost everywhere, with the dual concept being null set, meaning "with probability 0". * In topology and algebraic geometry, a generic property is one th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hyperplane Section
In mathematics, a hyperplane section of a subset ''X'' of projective space P''n'' is the intersection of ''X'' with some hyperplane ''H''. In other words, we look at the subset ''X''''H'' of those elements ''x'' of ''X'' that satisfy the single linear condition ''L'' = 0 defining ''H'' as a linear subspace. Here ''L'' or ''H'' can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication. From a geometrical point of view, the most interesting case is when ''X'' is an algebraic subvariety; for more general cases, in mathematical analysis, some analogue of the Radon transform applies. In algebraic geometry, assuming therefore that ''X'' is ''V'', a subvariety not lying completely in any ''H'', the hyperplane sections are algebraic sets with irreducible components all of dimension dim(''V'') − 1. What more can be said is addressed by a collection of results known collectively as Bertini's theorem. The topology ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Picard Group
In mathematics, the Picard group of a ringed space ''X'', denoted by Pic(''X''), is the group of isomorphism classes of invertible sheaves (or line bundles) on ''X'', with the group operation being tensor product. This construction is a global version of the construction of the divisor class group, or ideal class group, and is much used in algebraic geometry and the theory of complex manifolds. Alternatively, the Picard group can be defined as the sheaf cohomology group :H^1 (X, \mathcal_X^).\, For integral schemes the Picard group is isomorphic to the class group of Cartier divisors. For complex manifolds the exponential sheaf sequence gives basic information on the Picard group. The name is in honour of Émile Picard's theories, in particular of divisors on algebraic surfaces. Examples * The Picard group of the spectrum of a Dedekind domain is its '' ideal class group''. * The invertible sheaves on projective space P''n''(''k'') for ''k'' a field, are the twisting shea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cyclic Group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative binary operation, and it contains an element ''g'' such that every other element of the group may be obtained by repeatedly applying the group operation to ''g'' or its inverse. Each element can be written as an integer power of ''g'' in multiplicative notation, or as an integer multiple of ''g'' in additive notation. This element ''g'' is called a ''generator'' of the group. Every infinite cyclic group is isomorphic to the additive group of Z, the integers. Every finite cyclic group of order ''n'' is isomorphic to the additive group of Z/''n''Z, the integers modulo ''n''. Every cyclic group is an abelian group (meaning that its group operation is commutative), and every finitely generated abelian group ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]