Matrix Variate Dirichlet Distribution
   HOME
*





Matrix Variate Dirichlet Distribution
In statistics, the matrix variate Dirichlet distribution is a generalization of the matrix variate beta distribution and of the Dirichlet distribution. Suppose U_1,\ldots,U_r are p\times p positive definite matrices with I_p-\sum_^rU_i also positive-definite, where I_p is the p\times p identity matrix. Then we say that the U_i have a matrix variate Dirichlet distribution, \left(U_1,\ldots,U_r\right)\sim D_p\left(a_1,\ldots,a_r;a_\right), if their joint probability density function is : \left\^\prod_^\det\left(U_i\right)^\det\left(I_p-\sum_^rU_i\right)^ where a_i>(p-1)/2,i=1,\ldots,r+1 and \beta_p\left(\cdots\right) is the multivariate beta function. If we write U_=I_p-\sum_^r U_i then the PDF takes the simpler form : \left\^\prod_^\det\left(U_i\right)^, on the understanding that \sum_^U_i=I_p. Theorems generalization of chi square-Dirichlet result Suppose S_i\sim W_p\left(n_i,\Sigma\right),i=1,\ldots,r+1 are independently distributed Wishart p\times p positive defini ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Statistics
Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical model to be studied. Populations can be diverse groups of people or objects such as "all people living in a country" or "every atom composing a crystal". Statistics deals with every aspect of data, including the planning of data collection in terms of the design of statistical survey, surveys and experimental design, experiments.Dodge, Y. (2006) ''The Oxford Dictionary of Statistical Terms'', Oxford University Press. When census data cannot be collected, statisticians collect data by developing specific experiment designs and survey sample (statistics), samples. Representative sampling as ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Matrix Variate Beta Distribution
In statistics, the matrix variate beta distribution is a generalization of the beta distribution. If U is a p\times p positive definite matrix with a matrix variate beta distribution, and a,b>(p-1)/2 are real parameters, we write U\sim B_p\left(a,b\right) (sometimes B_p^I\left(a,b\right)). The probability density function for U is: : \left\^ \det\left(U\right)^\det\left(I_p-U\right)^. Here \beta_p\left(a,b\right) is the multivariate beta function: : \beta_p\left(a,b\right)=\frac where \Gamma_p\left(a\right) is the multivariate gamma function given by : \Gamma_p\left(a\right)= \pi^\prod_^p\Gamma\left(a-(i-1)/2\right). Theorems Distribution of matrix inverse If U\sim B_p(a,b) then the density of X=U^ is given by : \frac\det(X)^\det\left(X-I_p\right)^ provided that X>I_p and a,b>(p-1)/2. Orthogonal transform If U\sim B_p(a,b) and H is a constant p\times p orthogonal matrix, then HUH^T\sim B(a,b). Also, if H is a random orthogonal p\times p matrix which is in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dirichlet Distribution
In probability and statistics, the Dirichlet distribution (after Peter Gustav Lejeune Dirichlet), often denoted \operatorname(\boldsymbol\alpha), is a family of continuous multivariate probability distributions parameterized by a vector \boldsymbol\alpha of positive reals. It is a multivariate generalization of the beta distribution, (Chapter 49: Dirichlet and Inverted Dirichlet Distributions) hence its alternative name of multivariate beta distribution (MBD). Dirichlet distributions are commonly used as prior distributions in Bayesian statistics, and in fact, the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution. The infinite-dimensional generalization of the Dirichlet distribution is the ''Dirichlet process''. Definitions Probability density function The Dirichlet distribution of order ''K'' ≥ 2 with parameters ''α''1, ..., ''α''''K'' > 0 has a probability density function with respect to Lebesgue m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Positive Definite Matrix
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Identity Matrix
In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or can be trivially determined by the context. I_1 = \begin 1 \end ,\ I_2 = \begin 1 & 0 \\ 0 & 1 \end ,\ I_3 = \begin 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end ,\ \dots ,\ I_n = \begin 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end. The term unit matrix has also been widely used, but the term ''identity matrix'' is now standard. The term ''unit matrix'' is ambiguous, because it is also used for a matrix of ones and for any unit of the ring of all n\times n matrices. In some fields, such as group theory or quantum mechanics, the identity matrix is sometimes denoted by a boldface one, \mathbf, or called "id" (short for identity). ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Probability Density Function
In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a ''relative likelihood'' that the value of the random variable would be close to that sample. Probability density is the probability per unit length, in other words, while the ''absolute likelihood'' for a continuous random variable to take on any particular value is 0 (since there is an infinite set of possible values to begin with), the value of the PDF at two different samples can be used to infer, in any particular draw of the random variable, how much more likely it is that the random variable would be close to one sample compared to the other sample. In a more precise sense, the PDF is used to specify the probability of the random variable falling ''within a particular range of values'', as opposed to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Multivariate Beta Function
Multivariate may refer to: In mathematics * Multivariable calculus * Multivariate function * Multivariate polynomial In computing * Multivariate cryptography * Multivariate division algorithm * Multivariate interpolation * Multivariate optical computing * Multivariate optimization, used for the design of heat exchangers, see In statistics * Multivariate analysis * Multivariate random variable * Multivariate statistics See also * Univariate * Bivariate (other) Bivariate may refer to: Mathematics * Bivariate function, a function of two variables * Bivariate polynomial, a polynomial of two indeterminates Statistics * Bivariate data, that shows the relationship between two variables * Bivariate analys ...
{{disambiguation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Wishart Distribution
In statistics, the Wishart distribution is a generalization to multiple dimensions of the gamma distribution. It is named in honor of John Wishart, who first formulated the distribution in 1928. It is a family of probability distributions defined over symmetric, nonnegative-definite random matrices (i.e. matrix-valued random variables). In random matrix theory, the space of Wishart matrices is called the ''Wishart ensemble''. These distributions are of great importance in the estimation of covariance matrices in multivariate statistics. In Bayesian statistics, the Wishart distribution is the conjugate prior of the inverse covariance-matrix of a multivariate-normal random-vector. Definition Suppose is a matrix, each column of which is independently drawn from a -variate normal distribution with zero mean: :G_ = (g_i^1,\dots,g_i^p)^T\sim \mathcal_p(0,V). Then the Wishart distribution is the probability distribution of the random matrix :S= G G^T = \sum_^n G_G_^T kno ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Positive Definite Matrices
In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number z^* Mz is positive for every nonzero complex column vector z, where z^* denotes the conjugate transpose of z. Positive semi-definite matrices are defined similarly, except that the scalars z^\textsfMz and z^* Mz are required to be positive ''or zero'' (that is, nonnegative). Negative-definite and negative semi-definite matrices are defined analogously. A matrix that is not positive semi-definite and not negative semi-definite is sometimes called indefinite. A matrix is thus positive-definite if and only if it is the matrix of a positive-definite quadratic form or Hermitian form. In other words, a matrix is positive-definite if and only if it defines a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Schur Complement
In linear algebra and the theory of matrices, the Schur complement of a block matrix is defined as follows. Suppose ''p'', ''q'' are nonnegative integers, and suppose ''A'', ''B'', ''C'', ''D'' are respectively ''p'' × ''p'', ''p'' × ''q'', ''q'' × ''p'', and ''q'' × ''q'' matrices of complex numbers. Let :M = \left begin A & B \\ C & D \end\right/math> so that ''M'' is a (''p'' + ''q'') × (''p'' + ''q'') matrix. If ''D'' is invertible, then the Schur complement of the block ''D'' of the matrix ''M'' is the ''p'' × ''p'' matrix defined by :M/D := A - BD^C. If ''A'' is invertible, the Schur complement of the block ''A'' of the matrix ''M'' is the ''q'' × ''q'' matrix defined by :M/A := D - CA^B. In the case that ''A'' or ''D'' is singular, substituting a generalized inverse for the inverses on ''M/A'' and ''M/D'' yields the generalized Schur complement. The Schur complement is named after Issai Schur who used it to prove Schur's lemma, although it had been used previous ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Inverse Dirichlet Distribution
In statistics, the inverse Dirichlet distribution is a derivation of the matrix variate Dirichlet distribution. It is related to the inverse Wishart distribution. Suppose U_1,\ldots,U_r are p\times p positive definite matrices with a matrix variate Dirichlet distribution, \left(U_1,\ldots,U_r\right)\sim D_p\left(a_1,\ldots,a_r;a_\right). Then X_i=^,i=1,\ldots,r have an inverse Dirichlet distribution, written \left(X_1,\ldots,X_r\right)\sim \operatorname\left(a_1,\ldots,a_r;a_\right). Their joint probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can ... is given by : \left\^ \prod_^r \det\left(X_i\right)^\det\left(I_p-\sum_^r^\right)^ References A. K. Gupta and D. K. Nagar 1999. "Matrix variate distributions". Chapman and Hall. {{statistics-stub Prob ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]