Mapping Cone (homological Algebra)
   HOME
*





Mapping Cone (homological Algebra)
In homological algebra, the mapping cone is a construction on a map of chain complexes inspired by the analogous construction in topology. In the theory of triangulated categories it is a kind of combined kernel and cokernel: if the chain complexes take their terms in an abelian category, so that we can talk about cohomology, then the cone of a map ''f'' being acyclic means that the map is a quasi-isomorphism; if we pass to the derived category of complexes, this means that ''f'' is an isomorphism there, which recalls the familiar property of maps of groups, modules over a ring, or elements of an arbitrary abelian category that if the kernel and cokernel both vanish, then the map is an isomorphism. If we are working in a t-category, then in fact the cone furnishes both the kernel and cokernel of maps between objects of its core. Definition The cone may be defined in the category of cochain complexes over any additive category (i.e., a category whose morphisms form abelian gr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homological Algebra
Homological algebra is the branch of mathematics that studies homology (mathematics), homology in a general algebraic setting. It is a relatively young discipline, whose origins can be traced to investigations in combinatorial topology (a precursor to algebraic topology) and abstract algebra (theory of module (mathematics), modules and Syzygy (mathematics), syzygies) at the end of the 19th century, chiefly by Henri Poincaré and David Hilbert. Homological algebra is the study of homological functors and the intricate algebraic structures that they entail; its development was closely intertwined with the emergence of category theory. A central concept is that of chain complexes, which can be studied through both their homology and cohomology. Homological algebra affords the means to extract information contained in these complexes and present it in the form of homological invariant (mathematics), invariants of ring (mathematics), rings, modules, topological spaces, and other 'tan ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Additive Category
In mathematics, specifically in category theory, an additive category is a preadditive category C admitting all finitary biproducts. Definition A category C is preadditive if all its hom-sets are abelian groups and composition of morphisms is bilinear; in other words, C is enriched over the monoidal category of abelian groups. In a preadditive category, every finitary product (including the empty product, i.e., a final object) is necessarily a coproduct (or initial object in the case of an empty diagram), and hence a biproduct, and conversely every finitary coproduct is necessarily a product (this is a consequence of the definition, not a part of it). Thus an additive category is equivalently described as a preadditive category admitting all finitary products, or a preadditive category admitting all finitary coproducts. Another, yet equivalent, way to define an additive category is a category (not assumed to be preadditive) that has a zero object, finite coprodu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mapping Cylinder
In mathematics, specifically algebraic topology, the mapping cylinder of a continuous function f between topological spaces X and Y is the quotient :M_f = (( ,1times X) \amalg Y)\,/\,\sim where the \amalg denotes the disjoint union, and ∼ is the equivalence relation generated by :(0,x)\sim f(x)\quad\textx\in X. That is, the mapping cylinder M_f is obtained by gluing one end of X\times ,1/math> to Y via the map f. Notice that the "top" of the cylinder \\times X is homeomorphic to X, while the "bottom" is the space f(X)\subset Y. It is common to write Mf for M_f, and to use the notation \sqcup_f or \cup_f for the mapping cylinder construction. That is, one writes :Mf = ( ,1times X) \cup_f Y with the subscripted cup symbol denoting the equivalence. The mapping cylinder is commonly used to construct the mapping cone Cf, obtained by collapsing one end of the cylinder to a point. Mapping cylinders are central to the definition of cofibrations. Basic properties The bottom ''Y'' is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singular Homology
In algebraic topology, singular homology refers to the study of a certain set of algebraic invariants of a topological space ''X'', the so-called homology groups H_n(X). Intuitively, singular homology counts, for each dimension ''n'', the ''n''-dimensional holes of a space. Singular homology is a particular example of a homology theory, which has now grown to be a rather broad collection of theories. Of the various theories, it is perhaps one of the simpler ones to understand, being built on fairly concrete constructions (see also the related theory simplicial homology). In brief, singular homology is constructed by taking maps of the standard ''n''-simplex to a topological space, and composing them into formal sums, called singular chains. The boundary operation – mapping each ''n''-dimensional simplex to its (''n''−1)-dimensional boundary – induces the singular chain complex. The singular homology is then the homology of the chain complex. The resulting ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Topological Space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points, along with an additional structure called a topology, which can be defined as a set of neighbourhoods for each point that satisfy some axioms formalizing the concept of closeness. There are several equivalent definitions of a topology, the most commonly used of which is the definition through open sets, which is easier than the others to manipulate. A topological space is the most general type of a mathematical space that allows for the definition of limits, continuity, and connectedness. Common types of topological spaces include Euclidean spaces, metric spaces and manifolds. Although very general, the concept of topological spaces is fundamental, and used in virtually every branch of modern mathematics. The study of topological spac ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Continuous Map
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value, known as '' discontinuities''. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is . Up until the 19th century, mathematicians largely relied on intuitive notions of continuity, and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity. Continuity is one of the core concepts of calculus and mathematical analysis, where arguments and values of functions are real and complex numbers. The concept has been generalized to functions between metric spaces and between topological spaces. The latter are the mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homology Group
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Long Exact Sequence
An exact sequence is a sequence of morphisms between objects (for example, groups, rings, modules, and, more generally, objects of an abelian category) such that the image of one morphism equals the kernel of the next. Definition In the context of group theory, a sequence :G_0\;\xrightarrow\; G_1 \;\xrightarrow\; G_2 \;\xrightarrow\; \cdots \;\xrightarrow\; G_n of groups and group homomorphisms is said to be exact at G_i if \operatorname(f_i)=\ker(f_). The sequence is called exact if it is exact at each G_i for all 1\leq i, i.e., if the image of each homomorphism is equal to the kernel of the next. The sequence of groups and homomorphisms may be either finite or infinite. A similar definition can be made for other s. For example, one could have an exact sequence of

Homotopy Category Of Chain Complexes
In homological algebra in mathematics, the homotopy category ''K(A)'' of chain complexes in an additive category ''A'' is a framework for working with chain homotopies and homotopy equivalences. It lies intermediate between the category of chain complexes ''Kom(A)'' of ''A'' and the derived category ''D(A)'' of ''A'' when ''A'' is abelian; unlike the former it is a triangulated category, and unlike the latter its formation does not require that ''A'' is abelian. Philosophically, while ''D(A)'' turns into isomorphisms any maps of complexes that are quasi-isomorphisms in ''Kom(A)'', ''K(A)'' does so only for those that are quasi-isomorphisms for a "good reason", namely actually having an inverse up to homotopy equivalence. Thus, ''K(A)'' is more understandable than ''D(A)''. Definitions Let ''A'' be an additive category. The homotopy category ''K(A)'' is based on the following definition: if we have complexes ''A'', ''B'' and maps ''f'', ''g'' from ''A'' to ''B'', a chain homoto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Triangulated Category
In mathematics, a triangulated category is a category with the additional structure of a "translation functor" and a class of "exact triangles". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology. In the 1960s, a typical use of triangulated categories was to extend properties of sheaves on a space ''X'' to complexes of sheaves, viewed as objects of the derived category of sheaves on ''X''. More recently, triangulated categories have become objects of interest in their own right. Many equivalences between triangulated categories of different origins have been proved or conjectured. For example, the homological mirror symmetry conj ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Homology (mathematics)
In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topology. Similar constructions are available in a wide variety of other contexts, such as abstract algebra, groups, Lie algebras, Galois theory, and algebraic geometry. The original motivation for defining homology groups was the observation that two shapes can be distinguished by examining their holes. For instance, a circle is not a disk because the circle has a hole through it while the disk is solid, and the ordinary sphere is not a circle because the sphere encloses a two-dimensional hole while the circle encloses a one-dimensional hole. However, because a hole is "not there", it is not immediately obvious how to define a hole or how to distinguish different kinds of holes. Homology was originally a rigorous mathematical method for defi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Column Vector
In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, consisting of a single row of n entries, \boldsymbol a = \begin a_1 & a_2 & \dots & a_n \end. (Throughout this article, boldface is used for both row and column vectors.) The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: \begin x_1 \; x_2 \; \dots \; x_m \end^ = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end and \begin x_1 \\ x_2 \\ \vdots \\ x_m \end^ = \begin x_1 \; x_2 \; \dots \; x_m \end. The set of all row vectors with ''n'' entries in a given field (such as the real numbers) forms an ''n''-dimensional vector space; similarly, the set of all column vectors with ''m'' entries forms an ''m''-dimensional vector space. The space of row vectors with ''n'' entries can b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]