Mandart Inellipse
   HOME
*



picture info

Mandart Inellipse
In geometry, the Mandart inellipse of a triangle is an ellipse inscribed within the triangle, tangent to its sides at the contact points of its excircles (which are also the vertices of the extouch triangle and the endpoints of the splitters). The Mandart inellipse is named after H. Mandart, who studied it in two papers published in the late 19th century..; . As cited by . Parameters As an inconic, the Mandart inellipse is described by the parameters :x:y:z=\frac:\frac:\frac where ''a'', ''b'', and ''c'' are sides of the given triangle. Related points The center of the Mandart inellipse is the mittenpunkt of the triangle. The three lines connecting the triangle vertices to the opposite points of tangency all meet in a single point, the Nagel point of the triangle. See also *Steiner inellipse In geometry, the Steiner inellipse,Weisstein, E. "Steiner Inellipse" — From MathWorld, A Wolfram Web Resource, http://mathworld.wolfram.com/SteinerInellipse.html. midpoint inellips ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a ''geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geome ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Inellipse
In triangle geometry, an inellipse is an ellipse that touches the three sides of a triangle. The simplest example is the incircle. Further important inellipses are the Steiner inellipse, which touches the triangle at the midpoints of its sides, the Mandart inellipse and Brocard inellipse (see examples section). For any triangle there exist an infinite number of inellipses. The Steiner inellipse plays a special role: Its area is the greatest of all inellipses. Because a non-degenerate conic section is uniquely determined by five items out of the sets of vertices and tangents, in a triangle whose three sides are given as tangents one can specify only the points of contact on two sides. The third point of contact is then uniquely determined. Parametric representations, center, conjugate diameters The inellipse of the triangle with vertices :O=(0,0), \; A=(a_1,a_2), \; B=(b_1,b_2) and points of contact :U=(u_1,u_2) ,\; V=(v_1,v_2) on OA and OB respectively can by described ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Tangent
In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve at a point if the line passes through the point on the curve and has slope , where ''f'' is the derivative of ''f''. A similar definition applies to space curves and curves in ''n''-dimensional Euclidean space. As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point. The tangent line to a point on a differentiable curve can also be thought of as a '' tangent line approximation'', the graph of the affine function that best approximates the original function at the given point. Similarly ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Excircle
In geometry, the incircle or inscribed circle of a triangle is the largest circle that can be contained in the triangle; it touches (is tangent to) the three sides. The center of the incircle is a triangle center called the triangle's incenter. An excircle or escribed circle of the triangle is a circle lying outside the triangle, tangent to one of its sides and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides. The center of the incircle, called the incenter, can be found as the intersection of the three internal angle bisectors. The center of an excircle is the intersection of the internal bisector of one angle (at vertex , for example) and the external bisectors of the other two. The center of this excircle is called the excenter relative to the vertex , or the excenter of . Because the internal bisector of an angle is perpendicular to its external bisector, it follows that the center of th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Extouch Triangle
In Euclidean geometry, the extouch triangle of a triangle is formed by joining the points at which the three excircles touch the triangle. Coordinates The vertices of the extouch triangle are given in trilinear coordinates by: :\begin T_A &= 0 : \csc^2 : \csc^2\\ T_B &= \csc^2 : 0 : \csc^2\\ T_C &= \csc^2 : \csc^2 : 0 \end or equivalently, where are the lengths of the sides opposite angles respectively, :\begin T_A &= 0 : \frac : \frac \\ T_B &= \frac : 0 : \frac \\ T_C &= \frac : \frac : 0. \end Related figures The triangle's splitters are lines connecting the vertices of the original triangle to the corresponding vertices of the extouch triangle; they bisect the triangle's perimeter and meet at the Nagel point. This is shown in blue and labelled "N" in the diagram. The Mandart inellipse is tangent to the sides of the reference triangle at the three vertices of the extouch triangle. Area The area of the extouch triangle, , is given by: :K_T= K\frac where and are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Splitter (geometry)
In Euclidean geometry, a splitter is a line segment through one of the vertices of a triangle (that is, a cevian) that bisects the perimeter of the triangle. They are not to be confused with cleavers, which also bisect the perimeter but instead emanate from the midpoint of one of the triangle's sides. Properties The opposite endpoint of a splitter to the chosen triangle vertex lies at the point on the triangle's side where one of the excircles of the triangle is tangent to that side. This point is also called a splitting point of the triangle. It is additionally a vertex of the extouch triangle and one of the points where the Mandart inellipse is tangent to the triangle side. The three splitters concur at the Nagel point of the triangle, which is also called its splitting center. Generalization Some authors have used the term "splitter" in a more general sense, for any line segment that bisects the perimeter of the triangle. Other line segments of this type include the clea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathesis (journal)
''Mathesis: Recueil Mathématique'' was a Belgian scientific journal for elementary mathematics, established in 1881 by Paul Mansion and Joseph Jean Baptiste Neuberg. An earlier Belgian mathematics journal, ''Nouvelle Correspondance Mathématique'', was established in 1874 by Mansion and Neuberg together with Eugène Catalan Eugene is a common male given name that comes from the Greek εὐγενής (''eugenēs''), "noble", literally "well-born", from εὖ (''eu''), "well" and γένος (''genos''), "race, stock, kin". ''Mathesis'' ceased publication in 1915 because of the war in Europe, but restarted again under the editorship of Neuberg and Adolphe Mineur in 1922 as the official journal of the
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Inconic
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle.Weisstein, Eric W. "Inconic." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Inconic.html Suppose are distinct non-collinear points, and let denote the triangle whose vertices are . Following common practice, denotes not only the vertex but also the angle at vertex , and similarly for and as angles in . Let a= , BC, , b=, CA, , c=, AB, , the sidelengths of . In trilinear coordinates, the general circumconic is the locus of a variable point X = x:y:z satisfying an equation :uyz + vzx + wxy = 0, for some point . The isogonal conjugate of each point on the circumconic, other than , is a point on the line :ux + vy + wz = 0. This line meets the circumcircle of in 0,1, or 2 points according as the circumconic is an ellipse, parabola, or hyperbola. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Parameters
A parameter (), generally, is any characteristic that can help in defining or classifying a particular system (meaning an event, project, object, situation, etc.). That is, a parameter is an element of a system that is useful, or critical, when identifying the system, or when evaluating its performance, status, condition, etc. ''Parameter'' has more specific meanings within various disciplines, including mathematics, computer programming, engineering, statistics, logic, linguistics, and electronic musical composition. In addition to its technical uses, there are also extended uses, especially in non-scientific contexts, where it is used to mean defining characteristics or boundaries, as in the phrases 'test parameters' or 'game play parameters'. Modelization When a system is modeled by equations, the values that describe the system are called ''parameters''. For example, in mechanics, the masses, the dimensions and shapes (for solid bodies), the densities and the viscosities ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mittenpunkt
In geometry, the (from German: ''middle point'') of a triangle is a triangle center: a point defined from the triangle that is invariant under Euclidean transformations of the triangle. It was identified in 1836 by Christian Heinrich von Nagel as the symmedian point of the excentral triangle of the given triangle.. Coordinates The mittenpunkt has trilinear coordinates :(b+c-a): (c+a-b ):(a+b-c) where , , and are the side lengths of the given triangle. Expressed instead in terms of the angles , , and , the trilinears arehttp://faculty.evansville.edu/ck6/encyclopedia/ETC.html Encyclopedia of Triangle Centers :\cot \frac : \cot \frac : \cot \frac=(\csc A+\cot A):(\csc B+\cot B):(\csc C+\cot C). The barycentric coordinates are :a(b+c-a):b(c+a-b):c(a+b-c) = (1+\cos A):(1+\cos B):(1+\cos C). Collinearities The mittenpunkt is at the intersection of the line connecting the centroid and the Gergonne point, the line connecting the incenter and the symmedian point and the line conn ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]