Madryga
   HOME
*





Madryga
In cryptography, Madryga is a block cipher published in 1984 by W. E. Madryga. It was designed to be easy and efficient for implementation in software. Serious weaknesses have since been found in the algorithm, but it was one of the first encryption algorithms to make use of data-dependent rotations, later used in other ciphers, such as RC5 and RC6. In his proposal, Madryga set forth twelve design objectives that are generally considered to be good goals in the design of a block cipher. DES had already fulfilled nine of them. The three that DES did not fulfill were: # Any possible key should produce a strong cipher. (Meaning no weak keys, which DES has.) # The length of the key and the text should be adjustable to meet varying security requirements. # The algorithm should be efficiently implementable in software on large mainframes, minicomputers, and microcomputers, and in discrete logic. (DES has a large amount of bitwise permutations, which are inefficient in software implement ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Cryptography
Cryptography, or cryptology (from grc, , translit=kryptós "hidden, secret"; and ''graphein'', "to write", or ''-logia'', "study", respectively), is the practice and study of techniques for secure communication in the presence of adversarial behavior. More generally, cryptography is about constructing and analyzing protocols that prevent third parties or the public from reading private messages. Modern cryptography exists at the intersection of the disciplines of mathematics, computer science, information security, electrical engineering, digital signal processing, physics, and others. Core concepts related to information security ( data confidentiality, data integrity, authentication, and non-repudiation) are also central to cryptography. Practical applications of cryptography include electronic commerce, chip-based payment cards, digital currencies, computer passwords, and military communications. Cryptography prior to the modern age was effectively synonymo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Avalanche Effect
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip). In the case of high-quality block ciphers, such a small change in either the key or the plaintext should cause a drastic change in the ciphertext. The actual term was first used by Horst Feistel, although the concept dates back to at least Shannon's ''diffusion''. If a block cipher or cryptographic hash function does not exhibit the avalanche effect to a significant degree, then it has poor randomization, and thus a cryptanalyst can make predictions about the input, being given only the output. This may be sufficient to partially or completely break the algorithm. Thus, the avalanche effect is a desirable condition from the point of view of the designer of the cryptographic algorithm or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

English Language
English is a West Germanic language of the Indo-European language family, with its earliest forms spoken by the inhabitants of early medieval England. It is named after the Angles, one of the ancient Germanic peoples that migrated to the island of Great Britain. Existing on a dialect continuum with Scots, and then closest related to the Low Saxon and Frisian languages, English is genealogically West Germanic. However, its vocabulary is also distinctively influenced by dialects of France (about 29% of Modern English words) and Latin (also about 29%), plus some grammar and a small amount of core vocabulary influenced by Old Norse (a North Germanic language). Speakers of English are called Anglophones. The earliest forms of English, collectively known as Old English, evolved from a group of West Germanic (Ingvaeonic) dialects brought to Great Britain by Anglo-Saxon settlers in the 5th century and further mutated by Norse-speaking Viking settlers starting in the 8th and 9th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

ASCII
ASCII ( ), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because of technical limitations of computer systems at the time it was invented, ASCII has just 128 code points, of which only 95 are , which severely limited its scope. All modern computer systems instead use Unicode, which has millions of code points, but the first 128 of these are the same as the ASCII set. The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for this character encoding. ASCII is one of the List of IEEE milestones, IEEE milestones. Overview ASCII was developed from telegraph code. Its first commercial use was as a seven-bit teleprinter code promoted by Bell data services. Work on the ASCII standard began in May 1961, with the first meeting of the American Standards Association's (ASA) (now the American Nat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ciphertext-only Attack
In cryptography, a ciphertext-only attack (COA) or known ciphertext attack is an attack model for cryptanalysis where the attacker is assumed to have access only to a set of ciphertexts. While the attacker has no channel providing access to the plaintext prior to encryption, in all practical ciphertext-only attacks, the attacker still has some knowledge of the plaintext. For instance, the attacker might know the language in which the plaintext is written or the expected statistical distribution of characters in the plaintext. Standard protocol data and messages are commonly part of the plaintext in many deployed systems and can usually be guessed or known efficiently as part of a ciphertext-only attack on these systems. Attack The attack is completely successful if the corresponding plaintexts can be deduced, or even better, the key. The ability to obtain any information at all about the underlying plaintext beyond what was pre-known to the attacker is still considered a success. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Alex Biryukov
Alex Biryukov is a cryptographer, currently a full professor at the University of Luxembourg. His notable work includes the design of the stream cipher LEX, as well as the cryptanalysis of numerous cryptographic primitives. In 1998, he developed impossible differential cryptanalysis together with Eli Biham and Adi Shamir. In 1999, he developed the slide attack together with David Wagner. In 2009 he developed, together with Dmitry Khovratovich, the first cryptanalytic attack on full-round AES-192 and AES-256 that is faster than a brute-force attack. In 2015 he developed the Argon2 key derivation function with Daniel Dinu and Dmitry Khovratovich. Since 1994 Alex Biryukov is a member of the International Association for Cryptologic Research International is an adjective (also used as a noun) meaning "between nations". International may also refer to: Music Albums * ''International'' (Kevin Michael album), 2011 * ''International'' (New Order album), 2002 * ''International'' (The T ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Chosen Plaintext
A chosen-plaintext attack (CPA) is an attack model for cryptanalysis which presumes that the attacker can obtain the ciphertexts for arbitrary plaintexts.Ross Anderson, ''Security Engineering: A Guide to Building Dependable Distributed Systems''. The first edition (2001): http://www.cl.cam.ac.uk/~rja14/book.html The goal of the attack is to gain information that reduces the security of the encryption scheme. Modern ciphers aim to provide semantic security, also known as ''ciphertext indistinguishability under chosen-plaintext attack'', and they are therefore, by design, generally immune to chosen-plaintext attacks if correctly implemented. Introduction In a chosen-plaintext attack the adversary can (possibly adaptively) ask for the ciphertexts of arbitrary plaintext messages. This is formalized by allowing the adversary to interact with an encryption oracle, viewed as a black box. The attacker’s goal is to reveal all or a part of the secret encryption key. It may seem infea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Parity Bit
A parity bit, or check bit, is a bit added to a string of binary code. Parity bits are a simple form of error detecting code. Parity bits are generally applied to the smallest units of a communication protocol, typically 8-bit octets (bytes), although they can also be applied separately to an entire message string of bits. The parity bit ensures that the total number of 1-bits in the string is even or odd. Accordingly, there are two variants of parity bits: even parity bit and odd parity bit. In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number. If the count of 1s in a given set of bits is already even, the parity bit's value is 0. In the case of odd parity, the coding is reversed. For a given set of bits, if the count of bits with a value of 1 is even, the parity bit value is se ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Eli Biham
Eli Biham ( he, אלי ביהם) is an Israeli cryptographer and cryptanalyst, currently a professor at the Technion - Israel Institute of Technology Computer Science department. Starting from October 2008 and till 2013, Biham was the dean of the Technion Computer Science department, after serving for two years as chief of CS graduate school. Biham received his Ph.D. for inventing (publicly) differential cryptanalysis, while working under Adi Shamir. It had, it turned out, been invented at least twice before. A team at IBM discovered it during their work on DES, and was requested/required to keep their discovery secret by the NSA, who evidently knew about it as well. Contributions to cryptanalysis Among his many contributions to cryptanalysis one can count: * differential cryptanalysis - publicly invented during his Ph.D. studies under Adi Shamir * Attacking all triple modes of operation. * impossible differential cryptanalysis - joint work with Adi Shamir and Alex Biryukov * ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Cryptanalysis
In cryptography, linear cryptanalysis is a general form of cryptanalysis based on finding affine approximations to the action of a cipher. Attacks have been developed for block ciphers and stream ciphers. Linear cryptanalysis is one of the two most widely used attacks on block ciphers; the other being differential cryptanalysis. The discovery is attributed to Mitsuru Matsui, who first applied the technique to the FEAL cipher (Matsui and Yamagishi, 1992). Subsequently, Matsui published an attack on the Data Encryption Standard (DES), eventually leading to the first experimental cryptanalysis of the cipher reported in the open community (Matsui, 1993; 1994). The attack on DES is not generally practical, requiring 247 known plaintexts. A variety of refinements to the attack have been suggested, including using multiple linear approximations or incorporating non-linear expressions, leading to a generalized partitioning cryptanalysis. Evidence of security against linear cryptanalysis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Block Cipher
In cryptography, a block cipher is a deterministic algorithm operating on fixed-length groups of bits, called ''blocks''. Block ciphers are specified cryptographic primitive, elementary components in the design of many cryptographic protocols and are widely used to encryption, encrypt large amounts of data, including in data exchange protocols. A block cipher uses blocks as an unvarying transformation. Even a secure block cipher is suitable for the encryption of only a single block of data at a time, using a fixed key. A multitude of block cipher modes of operation, modes of operation have been designed to allow their repeated use in a secure way to achieve the security goals of confidentiality and authentication, authenticity. However, block ciphers may also feature as building blocks in other cryptographic protocols, such as universal hash functions and pseudorandom number generators. Definition A block cipher consists of two paired algorithms, one for encryption, , and the othe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Differential Cryptanalysis
Differential cryptanalysis is a general form of cryptanalysis applicable primarily to block ciphers, but also to stream ciphers and cryptographic hash functions. In the broadest sense, it is the study of how differences in information input can affect the resultant difference at the output. In the case of a block cipher, it refers to a set of techniques for tracing differences through the network of transformation, discovering where the cipher exhibits non-random behavior, and exploiting such properties to recover the secret key (cryptography key). History The discovery of differential cryptanalysis is generally attributed to Eli Biham and Adi Shamir in the late 1980s, who published a number of attacks against various block ciphers and hash functions, including a theoretical weakness in the Data Encryption Standard (DES). It was noted by Biham and Shamir that DES was surprisingly resistant to differential cryptanalysis but small modifications to the algorithm would make it much mo ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]