Macdonald Conjecture (other)
   HOME
*





Macdonald Conjecture (other)
Macdonald conjecture may refer to one of several conjectures: *Macdonald's conjectures about Macdonald polynomials *Macdonald's generalization of the Dyson conjecture In mathematics, the Dyson conjecture is a conjecture about the constant term of certain Laurent polynomials, proved independently in 1962 by Kenneth G. Wilson, Wilson and Gunson. George Andrews (mathematician), Andrews generalized it to the q-Dy ... *Macdonald's generalization of the Mehta integral {{mathdab ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Macdonald Polynomial
In mathematics, Macdonald polynomials ''P''λ(''x''; ''t'',''q'') are a family of orthogonal symmetric polynomials in several variables, introduced by Macdonald in 1987. He later introduced a non-symmetric generalization in 1995. Macdonald originally associated his polynomials with weights λ of finite root systems and used just one variable ''t'', but later realized that it is more natural to associate them with affine root systems rather than finite root systems, in which case the variable ''t'' can be replaced by several different variables ''t''=(''t''1,...,''t''''k''), one for each of the ''k'' orbits of roots in the affine root system. The Macdonald polynomials are polynomials in ''n'' variables ''x''=(''x''1,...,''x''''n''), where ''n'' is the rank of the affine root system. They generalize many other families of orthogonal polynomials, such as Jack polynomials and Hall–Littlewood polynomials and Askey–Wilson polynomials, which in turn include most of the named 1-va ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dyson Conjecture
In mathematics, the Dyson conjecture is a conjecture about the constant term of certain Laurent polynomials, proved independently in 1962 by Kenneth G. Wilson, Wilson and Gunson. George Andrews (mathematician), Andrews generalized it to the q-Dyson conjecture, proved by Doron Zeilberger, Zeilberger and David Bressoud, Bressoud and sometimes called the Zeilberger–Bressoud theorem. Ian G. Macdonald, Macdonald generalized it further to more general root systems with the Macdonald constant term conjecture, proved by Ivan Cherednik, Cherednik. Dyson conjecture The Dyson conjecture states that the Laurent polynomial :\prod _(1-t_i/t_j)^ has constant term :\frac. The conjecture was first proved independently by and . later found a short proof, by observing that the Laurent polynomials, and therefore their constant terms, satisfy the recursion relations :F(a_1,\dots,a_n) = \sum_^nF(a_1,\dots,a_i-1,\dots,a_n). The case ''n'' = 3 of Dyson's conjecture follows from the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]